The effects of particle size, density and shape on margination of nanoparticles in microcirculation

纳米颗粒 材料科学 纳米技术 粒径 微循环 粒子(生态学) 沉积(地质) 化学工程 医学 古生物学 海洋学 沉积物 生物 工程类 放射科 地质学
作者
Randall Toy,Elliott Hayden,Christopher Shoup,Harihara Baskaran,Efstathios Karathanasis
出处
期刊:Nanotechnology [IOP Publishing]
卷期号:22 (11): 115101-115101 被引量:229
标识
DOI:10.1088/0957-4484/22/11/115101
摘要

In the recent past, remarkable advances in nanotechnology have generated nanoparticles of different shapes and sizes, which have been shown to exhibit unique properties suitable for biomedical applications such as cancer therapy and imaging. Obviously, all nanoparticles are not made equal. This becomes evident when we consider their transport behavior under blood flow in microcirculation. In this work, we evaluated the effect of critical physical characteristics such as the particle shape, size and density on a nanoparticle's tendency to marginate towards the vessel walls in microcirculation using an in vitro model. The wall deposition of nanoparticles was tested in a fibronectin-coated microfluidic channel at a physiologically relevant flow rate. Different classes of nanoparticles (liposome, metal particles) of different sizes (60–130 nm), densities (1–19 g ml − 1) and shapes (sphere, rod) displayed significantly different deposition as a result of different margination rates. The smaller-sized and the oblate-shaped particles displayed a favorable behavior as indicated by their higher margination rates. Notably, the particle density showed an even more essential role, as it was observed that the lighter particles marginated significantly more. Since nanoparticles must escape the flow in order to approach the vascular bed and subsequently extravascular components for meaningful interactions, the design of nanoparticles strongly affects their margination, a key factor for their ultimate in vivo effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jisoo520完成签到 ,获得积分10
2秒前
杪杪完成签到,获得积分10
2秒前
2秒前
Harper发布了新的文献求助10
4秒前
4秒前
Dawn发布了新的文献求助10
8秒前
维维完成签到,获得积分10
8秒前
9秒前
linfordlu完成签到,获得积分0
13秒前
彭于晏应助9Songs采纳,获得10
13秒前
14秒前
14秒前
Artra_Soong完成签到,获得积分10
16秒前
16秒前
18秒前
研友_VZG7GZ应助yjo采纳,获得10
19秒前
扇子发布了新的文献求助20
19秒前
21秒前
23秒前
李健应助zhangwenjie采纳,获得10
23秒前
23秒前
daoketuo完成签到,获得积分10
23秒前
daoketuo发布了新的文献求助10
26秒前
唐若冰完成签到,获得积分10
27秒前
积极向上山楂片完成签到,获得积分10
27秒前
嗯啊完成签到,获得积分10
28秒前
29秒前
29秒前
phil完成签到,获得积分10
31秒前
含蓄的赛君完成签到,获得积分10
32秒前
xixi发布了新的文献求助10
34秒前
zyh完成签到 ,获得积分10
35秒前
35秒前
36秒前
36秒前
37秒前
38秒前
积极擎汉完成签到,获得积分10
38秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4923236
求助须知:如何正确求助?哪些是违规求助? 4193683
关于积分的说明 13025807
捐赠科研通 3965586
什么是DOI,文献DOI怎么找? 2173403
邀请新用户注册赠送积分活动 1190992
关于科研通互助平台的介绍 1100532