分类器(UML)
计算机科学
人工智能
机器学习
主动学习(机器学习)
半监督学习
注释
样品(材料)
无监督学习
色谱法
化学
标识
DOI:10.1016/j.patcog.2011.08.009
摘要
Active learning is understood as any form of learning in which the learning algorithm has some control over the input samples due to a specific sample selection process based on which it builds up the model. In this paper, we propose a novel active learning strategy for data-driven classifiers, which is based on unsupervised criterion during off-line training phase, followed by a supervised certainty-based criterion during incremental on-line training. In this sense, we call the new strategy hybrid active learning. Sample selection in the first phase is conducted from scratch (i.e. no initial labels/learners are needed) based on purely unsupervised criteria obtained from clusters: samples lying near cluster centers and near the borders of clusters are expected to represent the most informative ones regarding the distribution characteristics of the classes. In the second phase, the task is to update already trained classifiers during on-line mode with the most important samples in order to dynamically guide the classifier to more predictive power. Both strategies are essential for reducing the annotation and supervision effort of operators in off-line and on-line classification systems, as operators only have to label an exquisite subset of the off-line training data resp. give feedback only on specific occasions during on-line phase. The new active learning strategy is evaluated based on real-world data sets from UCI repository and collected at on-line quality control systems. The results show that an active learning based selection of training samples (1) does not weaken the classification accuracies compared to when using all samples in the training process and (2) can out-perform classifiers which are built on randomly selected data samples.
科研通智能强力驱动
Strongly Powered by AbleSci AI