Hybrid active learning for reducing the annotation effort of operators in classification systems

分类器(UML) 计算机科学 人工智能 机器学习 主动学习(机器学习) 半监督学习 注释 样品(材料) 无监督学习 色谱法 化学
作者
Edwin Lughofer
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:45 (2): 884-896 被引量:85
标识
DOI:10.1016/j.patcog.2011.08.009
摘要

Active learning is understood as any form of learning in which the learning algorithm has some control over the input samples due to a specific sample selection process based on which it builds up the model. In this paper, we propose a novel active learning strategy for data-driven classifiers, which is based on unsupervised criterion during off-line training phase, followed by a supervised certainty-based criterion during incremental on-line training. In this sense, we call the new strategy hybrid active learning. Sample selection in the first phase is conducted from scratch (i.e. no initial labels/learners are needed) based on purely unsupervised criteria obtained from clusters: samples lying near cluster centers and near the borders of clusters are expected to represent the most informative ones regarding the distribution characteristics of the classes. In the second phase, the task is to update already trained classifiers during on-line mode with the most important samples in order to dynamically guide the classifier to more predictive power. Both strategies are essential for reducing the annotation and supervision effort of operators in off-line and on-line classification systems, as operators only have to label an exquisite subset of the off-line training data resp. give feedback only on specific occasions during on-line phase. The new active learning strategy is evaluated based on real-world data sets from UCI repository and collected at on-line quality control systems. The results show that an active learning based selection of training samples (1) does not weaken the classification accuracies compared to when using all samples in the training process and (2) can out-perform classifiers which are built on randomly selected data samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wcj发布了新的文献求助10
刚刚
www完成签到,获得积分10
1秒前
ZXY完成签到 ,获得积分10
1秒前
1秒前
1111完成签到 ,获得积分10
2秒前
充电宝应助小底采纳,获得10
2秒前
华仔应助顺利秋灵采纳,获得10
2秒前
琦琦完成签到 ,获得积分10
2秒前
2秒前
2秒前
深情安青应助伊凡采纳,获得10
2秒前
Chaimengdi发布了新的文献求助10
3秒前
小乌龟完成签到,获得积分10
3秒前
3秒前
3秒前
鸣笛应助彩色垣采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
天天天晴完成签到,获得积分10
5秒前
积极的誉完成签到,获得积分10
5秒前
我要学习发布了新的文献求助10
5秒前
5秒前
wcj完成签到,获得积分20
6秒前
6秒前
zxm完成签到,获得积分10
6秒前
ZSFL发布了新的文献求助10
6秒前
Thea完成签到 ,获得积分10
6秒前
眼睛大的薯片完成签到,获得积分10
7秒前
7秒前
KATHY完成签到,获得积分20
8秒前
棋士应助爱笑煎蛋采纳,获得10
8秒前
kkkkkk发布了新的文献求助10
8秒前
yyyyyy完成签到,获得积分10
8秒前
unique发布了新的文献求助10
8秒前
UU发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950593
求助须知:如何正确求助?哪些是违规求助? 3495971
关于积分的说明 11080135
捐赠科研通 3226361
什么是DOI,文献DOI怎么找? 1783812
邀请新用户注册赠送积分活动 867916
科研通“疑难数据库(出版商)”最低求助积分说明 800977