亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hybrid active learning for reducing the annotation effort of operators in classification systems

分类器(UML) 计算机科学 人工智能 机器学习 主动学习(机器学习) 半监督学习 注释 样品(材料) 无监督学习 色谱法 化学
作者
Edwin Lughofer
出处
期刊:Pattern Recognition [Elsevier]
卷期号:45 (2): 884-896 被引量:85
标识
DOI:10.1016/j.patcog.2011.08.009
摘要

Active learning is understood as any form of learning in which the learning algorithm has some control over the input samples due to a specific sample selection process based on which it builds up the model. In this paper, we propose a novel active learning strategy for data-driven classifiers, which is based on unsupervised criterion during off-line training phase, followed by a supervised certainty-based criterion during incremental on-line training. In this sense, we call the new strategy hybrid active learning. Sample selection in the first phase is conducted from scratch (i.e. no initial labels/learners are needed) based on purely unsupervised criteria obtained from clusters: samples lying near cluster centers and near the borders of clusters are expected to represent the most informative ones regarding the distribution characteristics of the classes. In the second phase, the task is to update already trained classifiers during on-line mode with the most important samples in order to dynamically guide the classifier to more predictive power. Both strategies are essential for reducing the annotation and supervision effort of operators in off-line and on-line classification systems, as operators only have to label an exquisite subset of the off-line training data resp. give feedback only on specific occasions during on-line phase. The new active learning strategy is evaluated based on real-world data sets from UCI repository and collected at on-line quality control systems. The results show that an active learning based selection of training samples (1) does not weaken the classification accuracies compared to when using all samples in the training process and (2) can out-perform classifiers which are built on randomly selected data samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
田様应助肾宝采纳,获得10
1秒前
丘比特应助KSung采纳,获得10
5秒前
9秒前
xxxxxxd发布了新的文献求助20
14秒前
浮游应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
21秒前
池雨发布了新的文献求助10
24秒前
KSung发布了新的文献求助10
27秒前
32秒前
49秒前
彭于晏应助KSung采纳,获得10
50秒前
51秒前
54秒前
林志迎发布了新的文献求助10
58秒前
59秒前
KSung发布了新的文献求助10
1分钟前
我是老大应助胡小壳采纳,获得10
1分钟前
xxxxxxd完成签到,获得积分10
1分钟前
1分钟前
义气的水蓝应助狂野的白秋采纳,获得200
1分钟前
池雨发布了新的文献求助10
1分钟前
1分钟前
大模型应助光轮2000采纳,获得10
1分钟前
顺利的沛萍完成签到,获得积分20
2分钟前
2分钟前
英俊的铭应助KSung采纳,获得10
2分钟前
2分钟前
光轮2000发布了新的文献求助10
2分钟前
胡小壳发布了新的文献求助10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
2分钟前
KSung发布了新的文献求助10
2分钟前
2分钟前
allrubbish完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498381
求助须知:如何正确求助?哪些是违规求助? 4595607
关于积分的说明 14449497
捐赠科研通 4528426
什么是DOI,文献DOI怎么找? 2481482
邀请新用户注册赠送积分活动 1465648
关于科研通互助平台的介绍 1438361