Hybrid active learning for reducing the annotation effort of operators in classification systems

分类器(UML) 计算机科学 人工智能 机器学习 主动学习(机器学习) 半监督学习 注释 样品(材料) 无监督学习 色谱法 化学
作者
Edwin Lughofer
出处
期刊:Pattern Recognition [Elsevier]
卷期号:45 (2): 884-896 被引量:85
标识
DOI:10.1016/j.patcog.2011.08.009
摘要

Active learning is understood as any form of learning in which the learning algorithm has some control over the input samples due to a specific sample selection process based on which it builds up the model. In this paper, we propose a novel active learning strategy for data-driven classifiers, which is based on unsupervised criterion during off-line training phase, followed by a supervised certainty-based criterion during incremental on-line training. In this sense, we call the new strategy hybrid active learning. Sample selection in the first phase is conducted from scratch (i.e. no initial labels/learners are needed) based on purely unsupervised criteria obtained from clusters: samples lying near cluster centers and near the borders of clusters are expected to represent the most informative ones regarding the distribution characteristics of the classes. In the second phase, the task is to update already trained classifiers during on-line mode with the most important samples in order to dynamically guide the classifier to more predictive power. Both strategies are essential for reducing the annotation and supervision effort of operators in off-line and on-line classification systems, as operators only have to label an exquisite subset of the off-line training data resp. give feedback only on specific occasions during on-line phase. The new active learning strategy is evaluated based on real-world data sets from UCI repository and collected at on-line quality control systems. The results show that an active learning based selection of training samples (1) does not weaken the classification accuracies compared to when using all samples in the training process and (2) can out-perform classifiers which are built on randomly selected data samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lu完成签到 ,获得积分10
刚刚
pw完成签到 ,获得积分10
刚刚
cyy1226发布了新的文献求助10
刚刚
唠叨的夏烟完成签到 ,获得积分10
刚刚
wanci应助四月一日采纳,获得10
1秒前
Young发布了新的文献求助10
1秒前
有魅力的猫咪完成签到,获得积分10
1秒前
zwy完成签到,获得积分10
1秒前
无情的问枫完成签到 ,获得积分10
1秒前
LSY完成签到 ,获得积分10
2秒前
Lucas应助苏silence采纳,获得10
2秒前
友好雅山发布了新的文献求助10
2秒前
hushan53发布了新的文献求助10
2秒前
从容的完成签到 ,获得积分10
3秒前
云悠水澈完成签到,获得积分10
3秒前
顺利毕业完成签到,获得积分10
3秒前
炸鸡发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助20
3秒前
4秒前
Zz完成签到 ,获得积分10
4秒前
于林渤完成签到,获得积分20
4秒前
愚者先生完成签到 ,获得积分10
4秒前
狄百招完成签到,获得积分10
4秒前
4秒前
殷勤的紫槐应助咿呀咿呀哟采纳,获得200
4秒前
悦耳短靴完成签到 ,获得积分10
4秒前
5秒前
HTY完成签到 ,获得积分10
5秒前
优秀不愁发布了新的文献求助10
5秒前
舒心发布了新的文献求助10
5秒前
小白完成签到,获得积分10
5秒前
鹿呦完成签到 ,获得积分10
5秒前
JamesPei应助会爬树的苹果采纳,获得10
5秒前
zhuling发布了新的文献求助10
6秒前
番茄炒西红柿完成签到,获得积分10
7秒前
gaozy完成签到,获得积分10
7秒前
充电宝应助奋斗灵珊采纳,获得10
8秒前
8秒前
Akim应助夏冰采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997