Hybrid active learning for reducing the annotation effort of operators in classification systems

分类器(UML) 计算机科学 人工智能 机器学习 主动学习(机器学习) 半监督学习 注释 样品(材料) 无监督学习 色谱法 化学
作者
Edwin Lughofer
出处
期刊:Pattern Recognition [Elsevier]
卷期号:45 (2): 884-896 被引量:85
标识
DOI:10.1016/j.patcog.2011.08.009
摘要

Active learning is understood as any form of learning in which the learning algorithm has some control over the input samples due to a specific sample selection process based on which it builds up the model. In this paper, we propose a novel active learning strategy for data-driven classifiers, which is based on unsupervised criterion during off-line training phase, followed by a supervised certainty-based criterion during incremental on-line training. In this sense, we call the new strategy hybrid active learning. Sample selection in the first phase is conducted from scratch (i.e. no initial labels/learners are needed) based on purely unsupervised criteria obtained from clusters: samples lying near cluster centers and near the borders of clusters are expected to represent the most informative ones regarding the distribution characteristics of the classes. In the second phase, the task is to update already trained classifiers during on-line mode with the most important samples in order to dynamically guide the classifier to more predictive power. Both strategies are essential for reducing the annotation and supervision effort of operators in off-line and on-line classification systems, as operators only have to label an exquisite subset of the off-line training data resp. give feedback only on specific occasions during on-line phase. The new active learning strategy is evaluated based on real-world data sets from UCI repository and collected at on-line quality control systems. The results show that an active learning based selection of training samples (1) does not weaken the classification accuracies compared to when using all samples in the training process and (2) can out-perform classifiers which are built on randomly selected data samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zbc_完成签到,获得积分10
刚刚
Doraemon应助scienceL采纳,获得10
刚刚
2秒前
winter发布了新的文献求助10
2秒前
huhuhuuh完成签到,获得积分10
2秒前
111完成签到,获得积分10
2秒前
眭超阳完成签到 ,获得积分10
3秒前
4秒前
郝宝真发布了新的文献求助10
4秒前
科研通AI2S应助zhugepengju采纳,获得10
6秒前
周军周君昭君完成签到,获得积分10
6秒前
11秒前
12秒前
14秒前
zhugepengju完成签到,获得积分10
15秒前
relexer发布了新的文献求助10
17秒前
无辜牛青完成签到,获得积分10
17秒前
老金金完成签到 ,获得积分10
19秒前
JR发布了新的文献求助30
19秒前
深情安青应助羊儿哥哥采纳,获得10
20秒前
筱筱完成签到,获得积分10
21秒前
张大星完成签到 ,获得积分10
22秒前
HEPI完成签到,获得积分10
22秒前
22秒前
吕耀炜完成签到,获得积分10
25秒前
26秒前
oceanao应助RoyYoung采纳,获得10
26秒前
djl1n发布了新的文献求助10
26秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
斯文败类应助科研通管家采纳,获得10
28秒前
英俊的铭应助科研通管家采纳,获得10
28秒前
JamesPei应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
小霞完成签到 ,获得积分10
31秒前
kkuula完成签到,获得积分10
32秒前
小毛完成签到,获得积分10
33秒前
马上秃头完成签到,获得积分10
34秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162968
求助须知:如何正确求助?哪些是违规求助? 2813989
关于积分的说明 7902647
捐赠科研通 2473613
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631546
版权声明 602187