Hybrid active learning for reducing the annotation effort of operators in classification systems

分类器(UML) 计算机科学 人工智能 机器学习 主动学习(机器学习) 半监督学习 注释 样品(材料) 无监督学习 色谱法 化学
作者
Edwin Lughofer
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:45 (2): 884-896 被引量:85
标识
DOI:10.1016/j.patcog.2011.08.009
摘要

Active learning is understood as any form of learning in which the learning algorithm has some control over the input samples due to a specific sample selection process based on which it builds up the model. In this paper, we propose a novel active learning strategy for data-driven classifiers, which is based on unsupervised criterion during off-line training phase, followed by a supervised certainty-based criterion during incremental on-line training. In this sense, we call the new strategy hybrid active learning. Sample selection in the first phase is conducted from scratch (i.e. no initial labels/learners are needed) based on purely unsupervised criteria obtained from clusters: samples lying near cluster centers and near the borders of clusters are expected to represent the most informative ones regarding the distribution characteristics of the classes. In the second phase, the task is to update already trained classifiers during on-line mode with the most important samples in order to dynamically guide the classifier to more predictive power. Both strategies are essential for reducing the annotation and supervision effort of operators in off-line and on-line classification systems, as operators only have to label an exquisite subset of the off-line training data resp. give feedback only on specific occasions during on-line phase. The new active learning strategy is evaluated based on real-world data sets from UCI repository and collected at on-line quality control systems. The results show that an active learning based selection of training samples (1) does not weaken the classification accuracies compared to when using all samples in the training process and (2) can out-perform classifiers which are built on randomly selected data samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乘风破浪完成签到 ,获得积分10
1秒前
FFFFFFFFF发布了新的文献求助10
1秒前
哈哈发布了新的文献求助10
1秒前
彭于晏应助hanzhang采纳,获得10
1秒前
yyjy完成签到,获得积分10
3秒前
yzz发布了新的文献求助20
3秒前
4秒前
4秒前
XU博士完成签到,获得积分10
4秒前
大尾巴白完成签到 ,获得积分10
5秒前
5秒前
W0701完成签到,获得积分10
5秒前
5秒前
6秒前
大个应助理躺丁真采纳,获得10
6秒前
wen完成签到,获得积分10
6秒前
6秒前
6秒前
松鼠非鼠完成签到 ,获得积分10
7秒前
jiayoua完成签到,获得积分20
7秒前
852应助qqwdss采纳,获得10
7秒前
科研通AI6应助三水采纳,获得10
8秒前
李健应助chenjie采纳,获得10
8秒前
8秒前
jgpiao发布了新的文献求助10
8秒前
搜集达人应助热情迎彤采纳,获得10
8秒前
满锅发布了新的文献求助10
9秒前
lolly完成签到,获得积分10
9秒前
10秒前
10秒前
微风发布了新的文献求助10
10秒前
周一完成签到,获得积分10
10秒前
10秒前
Orange应助哈哈采纳,获得10
12秒前
12秒前
量子星尘发布了新的文献求助150
12秒前
12秒前
丑鸭子发布了新的文献求助10
12秒前
Amberwdd发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070491
求助须知:如何正确求助?哪些是违规求助? 4291579
关于积分的说明 13370992
捐赠科研通 4111872
什么是DOI,文献DOI怎么找? 2251722
邀请新用户注册赠送积分活动 1256838
关于科研通互助平台的介绍 1189480