脂肪变性
芳香烃受体
内科学
内分泌学
CD36
脂肪生成
化学
脂肪酸
载脂蛋白B
脂质代谢
生物
受体
生物化学
胆固醇
基因
医学
转录因子
作者
Michelle Angrish,Bryan D. Mets,A. Daniel Jones,Timothy R. Zacharewski
标识
DOI:10.1093/toxsci/kfs155
摘要
2,3,7,8-Tetrachlorodibenzo-ρ-dioxin (TCDD) increases fatty acid (FA) transport and FA levels resulting in hepatic steatosis in mice. Diet as a source of lipids was investigated using customized diets, stearoyl-CoA desaturase 1 (Scd1) null mice, and (14)C-oleate (18:1n9) uptake studies. C57BL/6 mice fed with 5, 10, or 15% fat or 50, 60 or 70% carbohydrate diets exhibited increased relative liver weight following gavage with 30 µg/kg TCDD for 168 h. Hepatic lipid extract analysis from mice fed with 5, 10, and 15% fat diets identified a dose-dependent increase in total FAs induced by TCDD. Mice fed with fat diet also exhibited a dose-dependent increase in the dietary essential linoleic (18:2n6) and α-linolenic (18:3n3) acids. No dose-dependent FA increase was detected on carbohydrate diets, suggesting dietary fat as a source of lipids in TCDD-induced steatosis as opposed to de novo lipogenesis. TCDD also induced oleate levels threefold in Scd1 null mice that are incapable of desaturating stearate (18:0). This is consistent with oleate representing > 90% of all monounsaturated FAs in rodent chow. Moreover, TCDD increased hepatic (14)C-oleate levels twofold in wild type and 2.4-fold in Scd1 null mice concurrent with the induction of intestinal and hepatic lipid transport genes (Slc27a, Fabp, Ldlr, Cd36, and Apob). In addition, computational scanning identified putative dioxin response elements and in vivo ChIP-chip analysis revealed regions of aryl hydrocarbon receptor (AhR) enrichment in lipid transport genes differentially regulated by TCDD. Collectively, these results suggest the AhR mediates increased uptake of dietary fats that contribute to TCDD-elicited hepatic steatosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI