重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Regional air quality forecasting using spatiotemporal deep learning

空气质量指数 深度学习 计算机科学 人工智能 组分(热力学) 关系(数据库) 空气污染 机器学习 数据挖掘 气象学 地理 化学 物理 有机化学 热力学
作者
S. Abirami,P. Chitra
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:283: 125341-125341 被引量:39
标识
DOI:10.1016/j.jclepro.2020.125341
摘要

Accelerated urbanization and industrialization have led to poor air quality, which threatens human health with various lung ailments. Monitoring, modeling, and forecasting air quality would be a prudent way to promote awareness and defend human beings from the adversities of air pollution. The air quality of a region is monitored through various air quality monitoring stations built in and around it. The air quality data collected from these stations are highly dynamic, nonlinear, and hold intensely stochastic spatiotemporal correlations in them. Deep learning algorithms that are capable of extracting a higher level of abstraction in data can efficiently capture the spatiotemporal features in it. In this paper, we propose a hierarchical deep learning model named DL-Air that embodies three components for air quality forecasting. The first component, the encoder, encodes all spatial relations in the data. The second component, STAA-LSTM, a proposed variant of LSTM, identifies all temporal relations and the level of association between the identified spatiotemporal relation and the forecast. Also, the STAA-LSTM predicts the future spatiotemporal relations in the latent space. The third component, decoder suitably decodes these relations to obtain the actual forecast. The proposed framework was extensively evaluated for forecasting the real-world air quality data of Delhi. DL-Air shows better performance with around 30% reduced RMSE and MAE, 37% reduced AAD, 11% improved R2 and 8% improved accuracy in AQI category prediction than the best performing baseline approaches. Also, the predictive performance of DL-Air is found to be consistent across all seasons in Delhi.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
林珍发布了新的文献求助10
1秒前
空巢小黄人完成签到,获得积分10
1秒前
用户253182完成签到,获得积分10
1秒前
YJJ发布了新的文献求助10
1秒前
怡然幻然完成签到,获得积分10
1秒前
1秒前
研友_VZG7GZ应助Jackie采纳,获得10
1秒前
2秒前
xxwz发布了新的文献求助10
2秒前
吉吉完成签到,获得积分10
2秒前
李周发布了新的文献求助10
2秒前
852应助好旺采纳,获得10
2秒前
Shirky发布了新的文献求助10
2秒前
3秒前
2021发布了新的文献求助10
3秒前
可耐的靖发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
原始人完成签到,获得积分10
5秒前
三山发布了新的文献求助10
5秒前
烟花应助doranlou采纳,获得10
5秒前
5秒前
嗣音完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
gouqi发布了新的文献求助10
6秒前
NexusExplorer应助全都卉采纳,获得10
6秒前
6秒前
缓慢采柳完成签到 ,获得积分10
7秒前
科目三应助哈哈哈哈哈采纳,获得10
8秒前
嘿嘿发布了新的文献求助10
8秒前
8秒前
浮游应助星星采纳,获得10
9秒前
bxbxbx完成签到,获得积分10
9秒前
Serene发布了新的文献求助10
10秒前
10秒前
10秒前
我是老大应助黄钦清采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567