Regional air quality forecasting using spatiotemporal deep learning

空气质量指数 深度学习 计算机科学 人工智能 组分(热力学) 关系(数据库) 空气污染 机器学习 数据挖掘 气象学 地理 热力学 物理 有机化学 化学
作者
S. Abirami,P. Chitra
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:283: 125341-125341 被引量:39
标识
DOI:10.1016/j.jclepro.2020.125341
摘要

Accelerated urbanization and industrialization have led to poor air quality, which threatens human health with various lung ailments. Monitoring, modeling, and forecasting air quality would be a prudent way to promote awareness and defend human beings from the adversities of air pollution. The air quality of a region is monitored through various air quality monitoring stations built in and around it. The air quality data collected from these stations are highly dynamic, nonlinear, and hold intensely stochastic spatiotemporal correlations in them. Deep learning algorithms that are capable of extracting a higher level of abstraction in data can efficiently capture the spatiotemporal features in it. In this paper, we propose a hierarchical deep learning model named DL-Air that embodies three components for air quality forecasting. The first component, the encoder, encodes all spatial relations in the data. The second component, STAA-LSTM, a proposed variant of LSTM, identifies all temporal relations and the level of association between the identified spatiotemporal relation and the forecast. Also, the STAA-LSTM predicts the future spatiotemporal relations in the latent space. The third component, decoder suitably decodes these relations to obtain the actual forecast. The proposed framework was extensively evaluated for forecasting the real-world air quality data of Delhi. DL-Air shows better performance with around 30% reduced RMSE and MAE, 37% reduced AAD, 11% improved R2 and 8% improved accuracy in AQI category prediction than the best performing baseline approaches. Also, the predictive performance of DL-Air is found to be consistent across all seasons in Delhi.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiao完成签到,获得积分10
1秒前
义气的巨人完成签到,获得积分10
1秒前
1秒前
Xiaoxin_Ju完成签到,获得积分10
1秒前
彼黍离离发布了新的文献求助10
2秒前
Holybot完成签到,获得积分10
2秒前
木樨完成签到,获得积分10
3秒前
myth完成签到,获得积分10
3秒前
4秒前
白潇潇完成签到 ,获得积分10
5秒前
琳琳完成签到,获得积分10
5秒前
didi完成签到,获得积分10
6秒前
6秒前
路痴完成签到,获得积分10
7秒前
凯卮完成签到,获得积分10
7秒前
过时的诗桃关注了科研通微信公众号
8秒前
lee完成签到 ,获得积分10
9秒前
火星仙人掌完成签到 ,获得积分10
9秒前
吾侪完成签到,获得积分20
10秒前
神勇的天菱完成签到,获得积分10
10秒前
KOBE94FU完成签到,获得积分10
10秒前
M95发布了新的文献求助10
11秒前
刘奶奶的牛奶完成签到,获得积分10
11秒前
桥豆麻袋完成签到,获得积分10
11秒前
11秒前
ttkd11完成签到,获得积分10
11秒前
12秒前
pcr163应助CyrusSo524采纳,获得250
12秒前
xr完成签到 ,获得积分10
12秒前
彼黍离离完成签到 ,获得积分10
12秒前
yiyiyi完成签到,获得积分10
12秒前
乐乐乐乐乐乐应助Luo采纳,获得10
13秒前
13秒前
研友_VZG7GZ应助吾侪采纳,获得10
13秒前
vicky完成签到,获得积分10
13秒前
Johnlian完成签到 ,获得积分10
14秒前
14秒前
爱笑的访梦完成签到,获得积分10
15秒前
屋子完成签到,获得积分10
15秒前
小谢完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953555
求助须知:如何正确求助?哪些是违规求助? 3499137
关于积分的说明 11094114
捐赠科研通 3229679
什么是DOI,文献DOI怎么找? 1785728
邀请新用户注册赠送积分活动 869490
科研通“疑难数据库(出版商)”最低求助积分说明 801478