Adaptive MultiScale Segmentations for Hyperspectral Image Classification

高光谱成像 模式识别(心理学) 计算机科学 人工智能 比例(比率) 分割 图像分割 像素 集合(抽象数据类型) 数据集 计算机视觉 地理 地图学 程序设计语言
作者
Qingming Leng,Haiou Yang,Junjun Jiang,Qi Tian
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (8): 5847-5860 被引量:17
标识
DOI:10.1109/tgrs.2020.2971716
摘要

The number of superpixels (i.e., segmentation scale) is crucial for spectral-spatial hyperspectral image (HSI) classification. Existing methods always set the segmentation scale through a manually experimental strategy, which is time-consuming and unsuitable for various complicated practical applications. The information fusion of complementary multiple scales is proven to be more effective than the single scale for HSI classification, but the scale level is still set manually. In this article, we propose a novel adaptive multiscale segmentations (AMSs) method that can automatically provide a set of suitable scales that are adapted to different hyperspectral data. Specifically, based on the assumption that the segmentation scale of HSI is related to the image complexity itself, the texture ratio and the number of land cover classes are used to examine a candidate scale pool. A good scale means that it contains a small spectral difference between pixels within the same superpixel (intrasuperpixel discrimination index) and a large discrepancy between neighboring superpixels (intersuperpixel discrimination index). Thus, an intra-interscale discrimination index is defined and applied to depict the characteristics of the scale. Then, the scale with the best intra-inter discrimination index, which usually has satisfactory performance, is treated as the initially selected scale. The remaining suitable scales are iteratively compared with the selected ones and then added to the target scale pool, until the newly added scale can no longer provide significantly complementary information. Extensive experimental results on three HSI data sets have demonstrated the effectiveness of the proposed AMS when compared with state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助略略略采纳,获得10
刚刚
科研通AI5应助小黄采纳,获得10
1秒前
vlots应助kingwill采纳,获得30
4秒前
丘比特应助Gilbert采纳,获得30
5秒前
6秒前
6秒前
研友_LBKR9n发布了新的文献求助10
9秒前
筱筱发布了新的文献求助20
10秒前
xiongxianmei发布了新的文献求助10
10秒前
紧张的天与完成签到,获得积分10
10秒前
11秒前
吖吖发布了新的文献求助20
11秒前
852应助carbon-dots采纳,获得10
11秒前
栀晴完成签到 ,获得积分10
12秒前
甜甜圈完成签到 ,获得积分10
14秒前
略略略发布了新的文献求助10
15秒前
科研通AI5应助简单从丹采纳,获得10
15秒前
17秒前
xiongxianmei完成签到,获得积分10
18秒前
18秒前
永远发布了新的文献求助10
21秒前
22秒前
mono发布了新的文献求助10
23秒前
高挑的白旋风完成签到,获得积分10
24秒前
27秒前
永远完成签到,获得积分10
27秒前
mmyhn应助丙1丙2丙采纳,获得10
28秒前
充电宝应助JXDeng采纳,获得10
29秒前
WSX完成签到,获得积分20
30秒前
30秒前
嘎嘎发布了新的文献求助10
30秒前
wind发布了新的文献求助10
31秒前
不懈奋进应助仨dsk采纳,获得30
32秒前
33秒前
llwl完成签到,获得积分10
34秒前
小蘑菇应助lxf采纳,获得10
35秒前
完美世界应助无心的土豆采纳,获得10
36秒前
36秒前
36秒前
Umair发布了新的文献求助10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738291
求助须知:如何正确求助?哪些是违规求助? 3281789
关于积分的说明 10026606
捐赠科研通 2998667
什么是DOI,文献DOI怎么找? 1645317
邀请新用户注册赠送积分活动 782748
科研通“疑难数据库(出版商)”最低求助积分说明 749901