IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos

计算机科学 人工智能 姿势 特征(语言学) 背景(考古学) RGB颜色模型 动作(物理) 计算机视觉 动作识别 模棱两可 关节式人体姿态估计 序列(生物学) 模式识别(心理学) 三维姿态估计 古生物学 哲学 语言学 物理 遗传学 量子力学 程序设计语言 生物 班级(哲学)
作者
Gyeongsik Moon,Heeseung Kwon,Kyoung Mu Lee,Minsu Cho
标识
DOI:10.1109/cvprw53098.2021.00372
摘要

Most current action recognition methods heavily rely on appearance information by taking an RGB sequence of entire image regions as input. While being effective in exploiting contextual information around humans, e.g., human appearance and scene category, they are easily fooled by out-of-context action videos where the contexts do not exactly match with target actions. In contrast, pose-based methods, which take a sequence of human skeletons only as input, suffer from inaccurate pose estimation or ambiguity of human pose per se. Integrating these two approaches has turned out to be non-trivial; training a model with both appearance and pose ends up with a strong bias towards appearance and does not generalize well to unseen videos. To address this problem, we propose to learn pose-driven feature integration that dynamically combines appearance and pose streams by observing pose features on the fly. The main idea is to let the pose stream decide how much and which appearance information is used in integration based on whether the given pose information is reliable or not. We show that the proposed IntegralAction achieves highly robust performance across in-context and out-of-context action video datasets. The codes are available in here.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助量子星尘采纳,获得10
刚刚
1秒前
脑洞疼应助量子星尘采纳,获得30
1秒前
大个应助量子星尘采纳,获得30
1秒前
情怀应助量子星尘采纳,获得30
1秒前
丘比特应助林小棠采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
酷波er应助量子星尘采纳,获得30
2秒前
orixero应助量子星尘采纳,获得30
2秒前
CodeCraft应助量子星尘采纳,获得30
2秒前
Akim应助量子星尘采纳,获得30
2秒前
华仔应助量子星尘采纳,获得30
2秒前
2秒前
2秒前
爆米花应助量子星尘采纳,获得30
3秒前
3秒前
yanting完成签到,获得积分10
3秒前
4秒前
深情安青应助量子星尘采纳,获得30
4秒前
今后应助geyunjie采纳,获得10
4秒前
李爱国应助量子星尘采纳,获得30
5秒前
善学以致用应助老武采纳,获得10
5秒前
思源应助量子星尘采纳,获得30
6秒前
6秒前
7秒前
田様应助量子星尘采纳,获得30
7秒前
深情安青应助量子星尘采纳,获得30
7秒前
今后应助量子星尘采纳,获得30
7秒前
所所应助量子星尘采纳,获得30
7秒前
陈静发布了新的文献求助30
7秒前
情怀应助量子星尘采纳,获得30
8秒前
量子星尘发布了新的文献求助50
8秒前
jiaaaaa应助萧凡灵采纳,获得150
9秒前
饕餮发布了新的文献求助10
10秒前
10秒前
10秒前
共享精神应助单纯的思松采纳,获得10
11秒前
我是老大应助量子星尘采纳,获得10
11秒前
yao完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Superabsorbent Polymers 2025 800
Rwandan diaspora online: Social connections and identity narratives 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5805195
求助须知:如何正确求助?哪些是违规求助? 5848012
关于积分的说明 15515402
捐赠科研通 4930468
什么是DOI,文献DOI怎么找? 2654642
邀请新用户注册赠送积分活动 1601437
关于科研通互助平台的介绍 1556419