苦味酸
氢键
猝灭(荧光)
荧光
聚合物
化学
结晶度
光化学
光诱导电子转移
聚丙烯酸
超分子化学
分子
晶体结构
结晶学
电子转移
有机化学
物理
量子力学
作者
Hao Cheng,Fu-Qiang Song,Nana Zhao,Xue‐Qin Song
出处
期刊:Dalton Transactions
[The Royal Society of Chemistry]
日期:2021-01-01
卷期号:50 (44): 16110-16121
被引量:24
摘要
From the perspective of human health and environmental safety, the development of hydrostable fluorescent sensors for the detection of heavy metal ions and nitroaromatics is an important but a challenging issue. To this end, a water-stable Zn2+ coordination polymer formulated as {[Zn(H2L)]·2DMF·3H2O}n (ZnCP) was prepared elaborately by a solvothermal method using a multidentate ligand (H4L) with 2,6-pyridine-dicarboxylic acid spaced by para-substituted benzene. Single-crystal analysis shows that the new ZnCP exhibits one-dimensional chain structural features, which further promoted to afford a wrinkled two-dimensional network structure via inter-chain hydrogen bonding. Powder X-ray diffraction and fluorescence measurements show that it can maintain crystallinity and structural integrity under harsh acidic and alkaline conditions with the pH ranging from 4 to 11. Notably, the bright blue-emissive ZnCP showed selective fluorescence quenching effects for Fe3+ and picric acid (PA), which makes it an excellent chemical sensor for Fe3+ and picric acid (PA) with low detection limits of 0.41 and 0.26 μM in water. The recognition mechanism of Fe3+ could be attributed to UV absorption competition and resonance energy transfer in the aid of weak electrostatic interactions, while the recognition mechanism of PA is considered to be a multi-quenching mechanism dominated by absorption competition and PET effects with the assistance of hydrogen bonding. In addition, poly(methyl methacrylate) (PMMA) films doped with ZnCP (ZnCP@PMMA) were developed to provide better sensing performance and portability for practical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI