作者
Cheng Chen,Shi Han,Zhiwen Jiang,Adil Salhi,Ruixin Chen,Xuefeng Cui,Bin Yu
摘要
Analysis and prediction of drug-target interactions (DTIs) play an important role in understanding drug mechanisms, as well as drug repositioning and design. Machine learning (ML)-based methods for DTIs prediction can mitigate the shortcomings of time-consuming and labor-intensive experimental approaches, while providing new ideas and insights for drug design. We propose a novel pipeline for predicting drug-target interactions, called DNN-DTIs. First, the target information is characterized by a number of features, namely, pseudo-amino acid composition, pseudo position-specific scoring matrix, conjoint triad composition, transition and distribution, Moreau-Broto autocorrelation, and structural features. The drug compounds are subsequently encoded using substructure fingerprints. Next, eXtreme gradient boosting (XGBoost) is used to determine the subset of non-redundant features of importance. The optimal balanced set of sample vectors is obtained by applying the synthetic minority oversampling technique (SMOTE). Finally, a DTIs predictor, DNN-DTIs, is developed based on a deep neural network (DNN) via a layer-by-layer learning scheme. Experimental results indicate that DNN-DTIs achieves better performance than other state-of-the-art predictors with ACC values of 98.78%, 98.60%, 97.98%, 98.24% and 98.00% on Enzyme, Ion Channels (IC), GPCR, Nuclear Receptors (NR) and Kuang's datasets. Therefore, the accurate prediction performance of DNN-DTIs makes it a favored choice for contributing to the study of DTIs, especially drug repositioning.