DNN-DTIs: Improved drug-target interactions prediction using XGBoost feature selection and deep neural network

人工智能 计算机科学 选择(遗传算法) 人工神经网络 特征选择 特征(语言学) 机器学习 数据挖掘 模式识别(心理学) 语言学 哲学
作者
Cheng Chen,Shi Han,Zhiwen Jiang,Adil Salhi,Ruixin Chen,Xuefeng Cui,Bin Yu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:136: 104676-104676 被引量:59
标识
DOI:10.1016/j.compbiomed.2021.104676
摘要

Analysis and prediction of drug-target interactions (DTIs) play an important role in understanding drug mechanisms, as well as drug repositioning and design. Machine learning (ML)-based methods for DTIs prediction can mitigate the shortcomings of time-consuming and labor-intensive experimental approaches, while providing new ideas and insights for drug design. We propose a novel pipeline for predicting drug-target interactions, called DNN-DTIs. First, the target information is characterized by a number of features, namely, pseudo-amino acid composition, pseudo position-specific scoring matrix, conjoint triad composition, transition and distribution, Moreau-Broto autocorrelation, and structural features. The drug compounds are subsequently encoded using substructure fingerprints. Next, eXtreme gradient boosting (XGBoost) is used to determine the subset of non-redundant features of importance. The optimal balanced set of sample vectors is obtained by applying the synthetic minority oversampling technique (SMOTE). Finally, a DTIs predictor, DNN-DTIs, is developed based on a deep neural network (DNN) via a layer-by-layer learning scheme. Experimental results indicate that DNN-DTIs achieves better performance than other state-of-the-art predictors with ACC values of 98.78%, 98.60%, 97.98%, 98.24% and 98.00% on Enzyme, Ion Channels (IC), GPCR, Nuclear Receptors (NR) and Kuang's datasets. Therefore, the accurate prediction performance of DNN-DTIs makes it a favored choice for contributing to the study of DTIs, especially drug repositioning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松的老鼠完成签到,获得积分10
1秒前
jessie发布了新的文献求助20
1秒前
fancynancy应助等的你呢采纳,获得30
1秒前
ghfgjjf完成签到 ,获得积分10
1秒前
Asteroid完成签到,获得积分10
1秒前
nemo发布了新的文献求助10
1秒前
geold发布了新的文献求助10
1秒前
orixero应助ccccccp采纳,获得10
2秒前
迟原发布了新的文献求助10
2秒前
脑洞疼应助卡塔赫纳采纳,获得10
3秒前
万能图书馆应助路戳戳采纳,获得10
3秒前
ss7完成签到,获得积分10
3秒前
闪闪天晴完成签到,获得积分10
3秒前
3秒前
3秒前
Mecury完成签到,获得积分10
3秒前
4秒前
李沐唅完成签到 ,获得积分10
4秒前
ALRISH完成签到,获得积分10
4秒前
4秒前
安AN完成签到,获得积分10
4秒前
6秒前
迟原完成签到,获得积分10
7秒前
Zp完成签到,获得积分10
7秒前
oo发布了新的文献求助10
7秒前
潇洒的白猫完成签到,获得积分10
7秒前
暴躁的不评完成签到,获得积分10
8秒前
闪闪凝冬完成签到,获得积分10
8秒前
8秒前
乐乐乐乐乐乐完成签到,获得积分10
9秒前
青鸟飞鱼完成签到,获得积分10
9秒前
wangchuanhai3420完成签到,获得积分10
9秒前
9秒前
SYLH应助kingripple采纳,获得10
9秒前
漂泊发布了新的文献求助10
9秒前
英俊的铭应助飞快的诗槐采纳,获得10
9秒前
wh完成签到,获得积分10
10秒前
10秒前
10秒前
cc完成签到,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950510
求助须知:如何正确求助?哪些是违规求助? 3495946
关于积分的说明 11079852
捐赠科研通 3226328
什么是DOI,文献DOI怎么找? 1783799
邀请新用户注册赠送积分活动 867892
科研通“疑难数据库(出版商)”最低求助积分说明 800942