From Closing Triangles to Higher-Order Motif Closures for Better Unsupervised Online Link Prediction

计算机科学 人工智能 机器学习 主题(音乐) 成对比较 雅卡索引 嵌入 图像拼接 无监督学习 数据挖掘 聚类分析 算法 理论计算机科学 物理 声学
作者
Ryan A. Rossi,Anup Rao,Sungchul Kim,Eunyee Koh,Nesreen K. Ahmed,Gang Wu
标识
DOI:10.1145/3459637.3481920
摘要

This paper introduces higher-order link prediction methods based on the notion of closing higher-order network motifs. The methods are fast and efficient for real-time ranking and link prediction-based applications such as online visitor stitching, web search, and online recommendation. In such applications, real-time performance is critical. The proposed methods do not require any explicit training data, nor do they derive an embedding from the graph data, or perform any explicit learning. Most existing unsupervised methods with the above desired properties are all based on closing triangles (common neighbors, Jaccard similarity, and the ilk). In this work, we develop unsupervised techniques based on the notion of closing higher-order motifs that generalize beyond closing simple triangles. Through extensive experiments, we find that these higher-order motif closures often outperform triangle-based methods, which are commonly used in practice. This result implies that one should consider other motif closures beyond simple triangles. We also find that the best motif closure depends highly on the underlying network and its structural properties. Furthermore, all methods described in this work are fast for link prediction-based applications requiring real-time performance. The experimental results indicate the importance of closing higher-order motifs for unsupervised link prediction. Finally, these new higher-order motif closures can serve as a basis for studying and developing better unsupervised real-time link prediction and ranking methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋的定帮应助wnan_07采纳,获得10
1秒前
霜降发布了新的文献求助10
1秒前
1秒前
1秒前
王晓蕾发布了新的文献求助30
1秒前
sherrywuxh发布了新的文献求助10
2秒前
ki发布了新的文献求助10
2秒前
理查德完成签到,获得积分10
3秒前
Fryanto完成签到,获得积分10
4秒前
4秒前
咪吖发布了新的文献求助10
4秒前
DXDXJX完成签到,获得积分10
4秒前
香蕉觅云应助gxy采纳,获得10
4秒前
4秒前
4秒前
6秒前
易大师完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
饱满南松发布了新的文献求助10
7秒前
8秒前
张大恒完成签到,获得积分10
8秒前
慕青应助牛奶秋刀鱼采纳,获得10
9秒前
wang完成签到,获得积分10
9秒前
英俊的铭应助喜悦采纳,获得10
9秒前
西西给西西的求助进行了留言
9秒前
naplzp发布了新的文献求助10
9秒前
Whale发布了新的文献求助10
10秒前
10秒前
兰陵萧笑声完成签到,获得积分10
11秒前
ksxx发布了新的文献求助10
11秒前
为学日益发布了新的文献求助10
11秒前
11秒前
trt发布了新的文献求助10
12秒前
12秒前
13秒前
lixinyu完成签到,获得积分10
13秒前
汀南发布了新的文献求助30
13秒前
充电宝应助饱满南松采纳,获得10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974643
求助须知:如何正确求助?哪些是违规求助? 3519094
关于积分的说明 11196979
捐赠科研通 3255182
什么是DOI,文献DOI怎么找? 1797700
邀请新用户注册赠送积分活动 877100
科研通“疑难数据库(出版商)”最低求助积分说明 806130