Target2DeNovoDrug: a novel programmatic tool for in silico-deep learning based de novo drug design for any target of interest

生物信息学 公共化学 计算机科学 化学信息学 药物发现 化学空间 工作流程 计算生物学 人工智能 配体(生物化学) 机器学习 虚拟筛选 数据挖掘 生物信息学 化学 生物 数据库 基因 受体 生物化学
作者
Rafał Madaj,Ben Geoffrey A S,Akhil Sanker,Pavan Preetham Valluri
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:40 (16): 7511-7516 被引量:5
标识
DOI:10.1080/07391102.2021.1898474
摘要

The on-going data-science and Artificial Intelligence (AI) revolution offer researchers a fresh set of tools to approach structure-based drug design problems in the computer-aided drug design space. A novel programmatic tool that incorporates in silico and deep learning based approaches for de novo drug design for any target of interest has been reported. Once the user specifies the target of interest in the form of a representative amino acid sequence or corresponding nucleotide sequence, the programmatic workflow of the tool generates compounds from the PubChem ligand library and novel SMILES of compounds not present in any ligand library but are likely to be active against the target. Following this, the tool performs a computationally efficient In-Silico modeling of the target and the newly generated compounds and stores the results of the protein-ligand interaction in the working folder of the user. Further, for the protein-ligand complex associated with the best protein-ligand interaction, the tool performs an automated Molecular Dynamics (MD) protocol and generates plots such as RMSD (Root Mean Square Deviation) which reveal the stability of the complex. A demonstrated use of the tool has been shown with the target signatures of Tumor Necrosis Factor-Alpha, an important therapeutic target in the case of anti-inflammatory treatment. The future scope of the tool involves, running the tool on a High-Performance Cluster for all known target signatures to generate data that will be useful to drive AI and Big data driven drug discovery. The code is hosted, maintained, and supported at the GitHub repository given in the link below https://github.com/bengeof/Target2DeNovoDrugCommunicated by Ramaswamy H. Sarma
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cctv18应助相识采纳,获得10
1秒前
1秒前
cyanpile完成签到,获得积分10
1秒前
1秒前
1秒前
氰砷完成签到,获得积分10
2秒前
2秒前
xixi完成签到,获得积分20
3秒前
doc_wang完成签到,获得积分20
4秒前
赘婿应助yx采纳,获得10
4秒前
4秒前
wangdashuai完成签到,获得积分10
4秒前
4秒前
5秒前
乐乐应助自觉的夏蓉采纳,获得50
5秒前
doctor杨完成签到,获得积分10
5秒前
5秒前
诶呀完成签到 ,获得积分10
5秒前
梦幻星辰fate完成签到,获得积分10
6秒前
YLQ完成签到,获得积分10
6秒前
Wendy发布了新的文献求助10
6秒前
孤独如曼发布了新的文献求助50
7秒前
am完成签到,获得积分10
7秒前
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
doctor杨发布了新的文献求助10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得100
8秒前
我是老大应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328460
求助须知:如何正确求助?哪些是违规求助? 2958479
关于积分的说明 8590607
捐赠科研通 2636706
什么是DOI,文献DOI怎么找? 1443184
科研通“疑难数据库(出版商)”最低求助积分说明 668564
邀请新用户注册赠送积分活动 655786