Design of iron (Fe)-doped NiCo2O4@ rGO urchin-shaped microspheres with outstanding electrochemical performances for asymmetric supercapacitor

超级电容器 材料科学 电容 兴奋剂 纳米技术 电极 化学工程 高分辨率透射电子显微镜 石墨烯 电化学 氧化物
作者
Ramzi Nasser,Xiao-Lu Wang,Amira Ben Gouider Trabelsi,Fatemah Homoud Alkallas,Habib Elhouichet,Ji-Ming Song
出处
期刊:Journal of energy storage [Elsevier]
卷期号:52: 104619-104619
标识
DOI:10.1016/j.est.2022.104619
摘要

Doping and compounding are two effective ways to improve material properties. The binary metals oxide NiCo 2 O 4 is an attractive class of electrode materials for supercapacitors because of a unique composition and structure. In this report, hybrid heterostructure of Fe-doped NiCo 2 O 4 urchin-shaped microspheres combined with reduced graphene oxide (rGO) (Fe-doped NiCo 2 O 4 @rGO) was successfully elaborated with hydrothermal and ultrasonic ways. Both XPS and HRTEM characterization showed that Fe element was successfully doped into NiCo 2 O 4 lattice. As electrode material for supercapacitive properties, the Fe-doped NiCo 2 O 4 @rGO shows outstanding electrochemical properties with ultrahigh specific capacitance of 2772 F·g −1 at 0.5 A·g −1 , ideal capacitance retention of displaying 2185 F·g −1 at 30 A·g −1 and good cycle life with 3.3% capacitance value loss during 12,000 cycles. Importantly, the analysis of the kinetic process proves the domination of the capacitive contribution over the diffusion process, during the charge storage mechanism. Interestingly, an asymmetric supercapacitor based on the Fe-doped NiCo 2 O 4 @rGO hybrid delivers superb specific energy of 93.5 Wh·kg −1 at 455 W·kg −1 specific power at 0.5 A·g −1 . Therefore, the designed Fe-doped NiCo 2 O 4 @rGO could be looked as promising electrode with high practicability value for future energy storage systems. • Fe-doped NiCo 2 O 4 urchin-shaped microspheres with nanowires was designed. • The electrode exhibited ultrahigh specific capacitance and excellent cycling life. • An asymmetric supercapacitor achieved superb specific energy. • Two devices in series could illuminate white LED for 20 min.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenchen发布了新的文献求助10
刚刚
CC完成签到,获得积分20
1秒前
花凉发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
哈哈哈哈气完成签到,获得积分20
2秒前
2秒前
上官若男应助周四一采纳,获得10
2秒前
2秒前
2秒前
2秒前
super关注了科研通微信公众号
3秒前
怪我过分美丽完成签到,获得积分10
3秒前
Nature发布了新的文献求助10
4秒前
Libra完成签到,获得积分10
4秒前
5秒前
6秒前
传奇3应助Ar采纳,获得10
6秒前
6秒前
6秒前
窝恁蝶完成签到,获得积分10
6秒前
柠檬精完成签到,获得积分10
6秒前
7秒前
8秒前
Ava应助奕初阳采纳,获得10
8秒前
小柒发布了新的文献求助10
8秒前
nini发布了新的文献求助10
10秒前
10秒前
10秒前
詹姆斯发布了新的文献求助10
10秒前
zyq完成签到 ,获得积分10
10秒前
shimmer.发布了新的文献求助10
11秒前
卡卡罗特发布了新的文献求助10
13秒前
10711完成签到,获得积分10
13秒前
mixieer完成签到,获得积分10
13秒前
14秒前
14185发布了新的文献求助10
14秒前
15秒前
weiwei发布了新的文献求助10
15秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170629
求助须知:如何正确求助?哪些是违规求助? 2821693
关于积分的说明 7936030
捐赠科研通 2482134
什么是DOI,文献DOI怎么找? 1322290
科研通“疑难数据库(出版商)”最低求助积分说明 633607
版权声明 602608