亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of prostate tumour hypoxia using pre-treatment MRI-derived radiomics: preliminary findings

医学 前列腺癌 磁共振成像 接收机工作特性 前列腺 置信区间 核医学 活检 放射科 内科学 癌症
作者
Jim Zhong,Russell Frood,A. McWilliam,A. Davey,Jane Shortall,Martin Swinton,Oliver Hulson,Catharine M L West,David L. Buckley,Sarah Brown,Ananya Choudhury,Peter Hoskin,Ann Henry,Andrew Scarsbrook
出处
期刊:Radiologia Medica [Springer Nature]
卷期号:128 (6): 765-774
标识
DOI:10.1007/s11547-023-01644-3
摘要

To develop a machine learning (ML) model based on radiomic features (RF) extracted from whole prostate gland magnetic resonance imaging (MRI) for prediction of tumour hypoxia pre-radiotherapy.Consecutive patients with high-grade prostate cancer and pre-treatment MRI treated with radiotherapy between 01/12/2007 and 1/08/2013 at two cancer centres were included. Cancers were dichotomised as normoxic or hypoxic using a biopsy-based 32-gene hypoxia signature (Ragnum signature). Prostate segmentation was performed on axial T2-weighted (T2w) sequences using RayStation (v9.1). Histogram standardisation was applied prior to RF extraction. PyRadiomics (v3.0.1) was used to extract RFs for analysis. The cohort was split 80:20 into training and test sets. Six different ML classifiers for distinguishing hypoxia were trained and tuned using five different feature selection models and fivefold cross-validation with 20 repeats. The model with the highest mean validation area under the curve (AUC) receiver operating characteristic (ROC) curve was tested on the unseen set, and AUCs were compared via DeLong test with 95% confidence interval (CI).195 patients were included with 97 (49.7%) having hypoxic tumours. The hypoxia prediction model with best performance was derived using ridge regression and had a test AUC of 0.69 (95% CI: 0.14). The test AUC for the clinical-only model was lower (0.57), but this was not statistically significant (p = 0.35). The five selected RFs included textural and wavelet-transformed features.Whole prostate MRI-radiomics has the potential to non-invasively predict tumour hypoxia prior to radiotherapy which may be helpful for individualised treatment optimisation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Sience完成签到,获得积分10
8秒前
15秒前
34秒前
37秒前
41秒前
44秒前
chen发布了新的文献求助10
47秒前
考马斯靓女完成签到,获得积分10
53秒前
橙子完成签到 ,获得积分10
54秒前
林三发布了新的文献求助10
55秒前
脑洞疼应助考马斯靓女采纳,获得10
58秒前
chen应助林三采纳,获得10
1分钟前
lulu2024完成签到,获得积分10
1分钟前
情怀应助滴滴采纳,获得10
1分钟前
10完成签到,获得积分10
1分钟前
nagisa发布了新的文献求助10
1分钟前
TAD完成签到,获得积分10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
大意的晓亦完成签到 ,获得积分10
1分钟前
安有才发布了新的文献求助10
1分钟前
这个手刹不太灵完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
TAD发布了新的文献求助10
2分钟前
timick完成签到,获得积分10
2分钟前
SciGPT应助安有才采纳,获得10
2分钟前
大个应助星夜吹笛牛上采纳,获得10
2分钟前
2分钟前
nagisa发布了新的文献求助10
2分钟前
chujun_cai完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
安有才发布了新的文献求助10
2分钟前
2分钟前
2分钟前
可爱的函函应助安有才采纳,获得10
3分钟前
听闻墨笙完成签到 ,获得积分10
3分钟前
安有才完成签到,获得积分10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353475
求助须知:如何正确求助?哪些是违规求助? 2978095
关于积分的说明 8683663
捐赠科研通 2659409
什么是DOI,文献DOI怎么找? 1456252
科研通“疑难数据库(出版商)”最低求助积分说明 674302
邀请新用户注册赠送积分活动 665016