人工神经网络
约束(计算机辅助设计)
反演(地质)
频域
计算机科学
边值问题
偏微分方程
波动方程
二次方程
航程(航空)
声波方程
应用数学
声波
物理
数学分析
声学
数学
人工智能
工程类
几何学
航空航天工程
地质学
古生物学
构造盆地
计算机视觉
作者
Yayun Wu,Hossein S. Aghamiry,S. Operto,Jianwei Ma
标识
DOI:10.3997/2214-4609.202310403
摘要
Summary Frequency-domain simulation of seismic waves plays an important role in seismic inversion, but it remains challenging in large models. The recently proposed physics-informed neural networks (PINNs), as an effective deep learning method, have achieved successful applications in solving a wide range of partial differential equations (PDEs), although there is still room for improvement on this front. We solve the acoustic and visco-acoustic scattered-field (Lippmann-Schwinger) wave equation in the frequency domain with PINN. We propose a new hard constraint method to implement the free surface boundary conditions in the loss function of PINN. We illustrate that PINN with hard constraint has a higher accuracy than weak constraint method. We design a new neural network by adding quadratic terms. The new neural network dramatically improves the capacity and flexibility to represent complex solutions.
科研通智能强力驱动
Strongly Powered by AbleSci AI