材料科学
电磁屏蔽
微波食品加热
电磁干扰
光电子学
吸收(声学)
反射损耗
电解质
电磁干扰
调制(音乐)
太赫兹辐射
电化学
纳米技术
电极
电信
复合材料
复合数
声学
计算机科学
化学
物理
物理化学
作者
W. Y. Fei,Jianmin Li,Linfeng Ma,Tongqing Zhou,Xianjun Zhu,Xingyu He,Shujuan Liu,Jing Bian,Qiang Zhao
标识
DOI:10.1002/adma.202413311
摘要
Abstract The increasingly complex electromagnetic (EM) environment necessitates advanced electrically controllable electromagnetic interference (EMI) shielding materials that can adapt to varying EM conditions. This study develops a flexible electrochemically tunable EMI shielding device based on ultrathin Ti 3 C 2 T x MXene films, exhibiting reversible shielding effectiveness (SE) modulation from 18.9 to 26.2 dB in X band at 0.1 and −1.5 V. Unlike the previously reported mechanism relying on interlayer spacing adjustments, the work leverages transformations of charging state and surface chemistry for tunability during the electrochemical process. The Ti 3 C 2 T x flake size is also evidenced to play a crucial role, with smaller flakes offering higher absorption modulation despite lower SE modulation, enabling the device with high designability. When integrated with Salisbury screen structure, the device achieves adjustable absorption from 93.560% at 0.1 V to 99.996% at −1 V, showing a tunable reflection suppression ratio up to 32 dB with an effective bandwidth of 4.2 GHz. Additionally, incorporating resonant cavity structure enables absorption‐dominated (over 90%) microwave‐responsive switching at 0.1 and −1.5 V. This work highlights significant potential of adaptive EMI shielding materials for applications in smart electronic protection, EM switch, and radar camouflage.
科研通智能强力驱动
Strongly Powered by AbleSci AI