Ensemble learning‐based pretreatment MRI radiomic model for distinguishing intracranial extraventricular ependymoma from glioblastoma multiforme

接收机工作特性 医学 磁共振成像 胶质母细胞瘤 判别式 无线电技术 逻辑回归 放射科 曲线下面积 室管膜瘤 核医学 人工智能 计算机科学 内科学 癌症研究
作者
Haoling He,Qianyan Long,Liyan Li,Yan Fu,Xueying Wang,Yuhong Qin,Muliang Jiang,Zeming Tan,Xiaoping Yi,Bihong T. Chen
出处
期刊:NMR in Biomedicine [Wiley]
卷期号:37 (12)
标识
DOI:10.1002/nbm.5242
摘要

Abstract This study aims to develop an ensemble learning (EL) method based on magnetic resonance (MR) radiomic features to preoperatively differentiate intracranial extraventricular ependymoma (IEE) from glioblastoma (GBM). This retrospective study enrolled patients with histopathologically confirmed IEE and GBM from June 2016 to June 2021. Radiomics features were extracted from T1‐weighted imaging (T1WI) and T2‐weighted imaging (T2WI) sequence images, and classification models were constructed using EL methods and logistic regression (LR). The efficiency of the models was assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis. The combined EL model, based on clinical parameters and radiomic features from T1WI and T2WI images, demonstrated good discriminative ability, achieving an area under the receiver operating characteristics curve (AUC) of 0.96 (95% CI 0.94–0.98), a specificity of 0.84, an accuracy of 0.92, and a sensitivity of 0.95 in the training set, and an AUC of 0.89 (95% CI 0.83–0.94), a specificity of 0.83, an accuracy of 0.81, and a sensitivity of 0.74 in the validation set. The discriminative efficacy of the EL model was significantly higher than that of the LR model. Favorable calibration performance and clinical applicability for the EL model were observed. The EL model combining preoperative MR‐based tumor radiomics and clinical data showed high accuracy and sensitivity in differentiating IEE from GBM preoperatively, which may potentially assist in clinical management of these brain tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌的u完成签到,获得积分10
1秒前
1秒前
梓榆发布了新的文献求助20
2秒前
2秒前
害羞的雁易完成签到 ,获得积分10
2秒前
3秒前
搞怪网络应助yyyrrr采纳,获得10
3秒前
139完成签到 ,获得积分0
3秒前
4秒前
5km完成签到,获得积分10
4秒前
wpxyy发布了新的文献求助10
5秒前
5秒前
6秒前
FangyingTang完成签到 ,获得积分10
6秒前
6秒前
LILING完成签到,获得积分10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得30
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
gao发布了新的文献求助10
7秒前
今后应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
文风杰采完成签到,获得积分10
7秒前
梦溪发布了新的文献求助10
8秒前
牛牛牛完成签到,获得积分10
8秒前
董蓝天完成签到 ,获得积分10
9秒前
善学以致用应助科研八戒采纳,获得10
9秒前
10秒前
SciGPT应助Chaimengdi采纳,获得10
10秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950510
求助须知:如何正确求助?哪些是违规求助? 3495946
关于积分的说明 11079852
捐赠科研通 3226328
什么是DOI,文献DOI怎么找? 1783799
邀请新用户注册赠送积分活动 867892
科研通“疑难数据库(出版商)”最低求助积分说明 800942