Uncovering multi-order Popularity and Similarity Mechanisms in Link Prediction by graphlet predictors

人气 链接(几何体) 相似性(几何) 订单(交换) 计算机科学 数据挖掘 人工智能 心理学 业务 社会心理学 计算机网络 财务 图像(数学)
作者
Yongjian He,Yijun Ran,Zengru Di,Tao Zhou,Xiaoke Xu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2408.09406
摘要

Link prediction has become a critical problem in network science and has thus attracted increasing research interest. Popularity and similarity are two primary mechanisms in the formation of real networks. However, the roles of popularity and similarity mechanisms in link prediction across various domain networks remain poorly understood. Accordingly, this study used orbit degrees of graphlets to construct multi-order popularity- and similarity-based network link predictors, demonstrating that traditional popularity- and similarity-based indices can be efficiently represented in terms of orbit degrees. Moreover, we designed a supervised learning model that fuses multiple orbit-degree-based features and validated its link prediction performance. We also evaluated the mean absolute Shapley additive explanations of each feature within this model across 550 real-world networks from six domains. We observed that the homophily mechanism, which is a similarity-based feature, dominated social networks, with its win rate being 91\%. Moreover, a different similarity-based feature was prominent in economic, technological, and information networks. Finally, no single feature dominated the biological and transportation networks. The proposed approach improves the accuracy and interpretability of link prediction, thus facilitating the analysis of complex networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俏皮代丝发布了新的文献求助10
1秒前
科研通AI6应助LLLLLL采纳,获得10
1秒前
哈哈哈哈发布了新的文献求助10
1秒前
FashionBoy应助xujingyi采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
我是老大应助111采纳,获得10
2秒前
2秒前
SciGPT应助眼睛大的寄真采纳,获得10
3秒前
Cc321完成签到,获得积分10
4秒前
panpanpanda完成签到 ,获得积分10
6秒前
6秒前
好( づ ωど)完成签到,获得积分10
8秒前
8秒前
飞翔的发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
高临霖完成签到,获得积分10
12秒前
sxw关闭了sxw文献求助
13秒前
13秒前
14秒前
siijjfjjf发布了新的文献求助10
14秒前
14秒前
night完成签到,获得积分20
14秒前
纸柒完成签到 ,获得积分10
14秒前
干净傲霜完成签到 ,获得积分10
15秒前
罗攀发布了新的文献求助10
15秒前
404完成签到,获得积分10
16秒前
xujingyi发布了新的文献求助10
16秒前
英俊的铭应助weiv采纳,获得10
16秒前
17秒前
寻一完成签到 ,获得积分10
17秒前
18秒前
18秒前
华仔应助金熙美采纳,获得10
20秒前
乌鱼子发布了新的文献求助10
20秒前
Proddy发布了新的文献求助20
20秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646495
求助须知:如何正确求助?哪些是违规求助? 4771505
关于积分的说明 15035374
捐赠科研通 4805305
什么是DOI,文献DOI怎么找? 2569593
邀请新用户注册赠送积分活动 1526581
关于科研通互助平台的介绍 1485858