已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Physics-driven self-supervised learning system for seismic velocity inversion

反演(地质) 计算机科学 人工神经网络 人工智能 监督学习 深度学习 算法 合成数据 地震速度 波形 机器学习 数据挖掘 模式识别(心理学) 地质学 地震学 构造学 雷达 电信
作者
Bin Liu,Peng Jiang,Qingyang Wang,Yuxiao Ren,Senlin Yang,Anthony G. Cohn
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (2): R145-R161 被引量:10
标识
DOI:10.1190/geo2021-0302.1
摘要

Seismic velocity inversion plays a vital role in various applied seismology processes. A series of deep learning methods have been developed that rely purely on manually provided labels for supervision; however, their performances depend heavily on using large training data sets with corresponding velocity models. Because no physical laws are used in the training phase, it is usually challenging to generalize trained neural networks to a new data domain. To mitigate these issues, we have embedded a seismic forward modeling step at the end of a network to remap the inversion result back to seismic data and thus train the neural network through self-supervised loss, i.e., the misfit between the network input and output. As a result, we eliminate the need for many labeled velocity models, and physical laws are introduced when back-propagating gradients through the seismic forward modeling step. We verify the effectiveness of our approach through comprehensive experiments on synthetic data sets, where self-supervised learning outperforms the fully supervised approach, which accesses much more labeled data. The superior performance is even more significant when compared with a new data domain that has velocity models with faults and more geologic layers. Finally, in case of unknown and more complex data types, we develop a network-constrained full-waveform inversion (FWI) method. This method refines the initial prediction of the network by iteratively optimizing network parameters other than the velocity model, as found with the conventional FWI method, and demonstrates clear advantages in terms of interface and velocity accuracy. With these measures (self-supervised learning and network-constrained FWI), our physics-driven self-supervised learning system successfully mitigates issues such as the dependence on large labeled data sets, the absence of physical laws, and the difficulty in adapting to new data domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘璇1发布了新的文献求助10
3秒前
FashionBoy应助一笑置之采纳,获得10
4秒前
8秒前
岳小龙完成签到 ,获得积分10
9秒前
黯然完成签到 ,获得积分10
11秒前
14秒前
keyandog完成签到,获得积分10
14秒前
董果果发布了新的文献求助30
15秒前
huha发布了新的文献求助10
16秒前
大个应助万事胜意采纳,获得10
16秒前
受伤的鞅完成签到,获得积分10
19秒前
玖梦恨别离完成签到 ,获得积分10
20秒前
三兔三发布了新的文献求助10
22秒前
嗯哼应助库洛洛采纳,获得10
22秒前
红红酱发布了新的文献求助10
23秒前
未雨绸缪完成签到,获得积分10
23秒前
huha完成签到,获得积分10
26秒前
打工者完成签到,获得积分20
26秒前
三兔三完成签到,获得积分20
26秒前
27秒前
万事胜意发布了新的文献求助10
33秒前
天天快乐应助红红酱采纳,获得10
35秒前
35秒前
我爱康康文献完成签到 ,获得积分10
35秒前
李爱国应助雨佳人圭采纳,获得10
39秒前
39秒前
所所应助甜心心采纳,获得10
40秒前
mahehivebv111完成签到,获得积分10
41秒前
summer发布了新的文献求助10
41秒前
大个应助岚岚采纳,获得10
44秒前
脑洞疼应助壮壮采纳,获得10
45秒前
结实初翠发布了新的文献求助10
46秒前
50秒前
超级的鼠标完成签到,获得积分20
51秒前
雨佳人圭发布了新的文献求助10
56秒前
59秒前
叶天宇完成签到,获得积分10
59秒前
小飞龙完成签到 ,获得积分10
1分钟前
搜集达人应助风度567采纳,获得10
1分钟前
壮壮发布了新的文献求助10
1分钟前
高分求助中
中国国际图书贸易总公司40周年纪念文集 大事记1949-1987 2000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
草地生态学 880
Threaded Harmony: A Sustainable Approach to Fashion 799
Basic Modern Theory of Linear Complex Analytic 𝑞-Difference Equations 510
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3059460
求助须知:如何正确求助?哪些是违规求助? 2715402
关于积分的说明 7444888
捐赠科研通 2360925
什么是DOI,文献DOI怎么找? 1251043
科研通“疑难数据库(出版商)”最低求助积分说明 607671
版权声明 596448