Physics-driven self-supervised learning system for seismic velocity inversion

反演(地质) 计算机科学 人工神经网络 人工智能 监督学习 深度学习 算法 合成数据 地震速度 波形 机器学习 数据挖掘 模式识别(心理学) 地质学 地震学 构造学 雷达 电信
作者
Bin Liu,Peng Jiang,Qingyang Wang,Yuxiao Ren,Senlin Yang,Anthony G. Cohn
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:88 (2): R145-R161 被引量:10
标识
DOI:10.1190/geo2021-0302.1
摘要

Seismic velocity inversion plays a vital role in various applied seismology processes. A series of deep learning methods have been developed that rely purely on manually provided labels for supervision; however, their performances depend heavily on using large training data sets with corresponding velocity models. Because no physical laws are used in the training phase, it is usually challenging to generalize trained neural networks to a new data domain. To mitigate these issues, we have embedded a seismic forward modeling step at the end of a network to remap the inversion result back to seismic data and thus train the neural network through self-supervised loss, i.e., the misfit between the network input and output. As a result, we eliminate the need for many labeled velocity models, and physical laws are introduced when back-propagating gradients through the seismic forward modeling step. We verify the effectiveness of our approach through comprehensive experiments on synthetic data sets, where self-supervised learning outperforms the fully supervised approach, which accesses much more labeled data. The superior performance is even more significant when compared with a new data domain that has velocity models with faults and more geologic layers. Finally, in case of unknown and more complex data types, we develop a network-constrained full-waveform inversion (FWI) method. This method refines the initial prediction of the network by iteratively optimizing network parameters other than the velocity model, as found with the conventional FWI method, and demonstrates clear advantages in terms of interface and velocity accuracy. With these measures (self-supervised learning and network-constrained FWI), our physics-driven self-supervised learning system successfully mitigates issues such as the dependence on large labeled data sets, the absence of physical laws, and the difficulty in adapting to new data domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助zmy采纳,获得10
刚刚
1秒前
wendydqw完成签到 ,获得积分10
2秒前
肖研研发布了新的文献求助20
2秒前
nnnu分析完成签到,获得积分10
2秒前
4秒前
5秒前
李健应助王杰采纳,获得10
5秒前
7秒前
7秒前
诗轩发布了新的文献求助10
7秒前
Orange应助baocq采纳,获得30
8秒前
好好学习完成签到,获得积分10
8秒前
ding应助ajun采纳,获得10
9秒前
9秒前
sumugeng完成签到,获得积分10
9秒前
李昕123发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
星辰大海应助SAOKA采纳,获得10
12秒前
Hus11221完成签到,获得积分10
13秒前
科研达人发布了新的文献求助10
14秒前
zmy发布了新的文献求助10
15秒前
可爱的函函应助Hydro采纳,获得10
16秒前
祝瑞完成签到,获得积分20
16秒前
16秒前
英姑应助活泼身影采纳,获得10
17秒前
17秒前
淡然的糖豆完成签到 ,获得积分10
17秒前
FIN应助aka2012采纳,获得10
17秒前
Zheng完成签到 ,获得积分10
18秒前
捉迷藏发布了新的文献求助10
18秒前
凳子3333发布了新的文献求助10
18秒前
shor0414完成签到 ,获得积分10
19秒前
司空豁完成签到,获得积分10
19秒前
小熊童话书完成签到,获得积分10
20秒前
祝瑞发布了新的文献求助20
20秒前
补喵完成签到,获得积分20
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460817
求助须知:如何正确求助?哪些是违规求助? 3054771
关于积分的说明 9044518
捐赠科研通 2744512
什么是DOI,文献DOI怎么找? 1505599
科研通“疑难数据库(出版商)”最低求助积分说明 695745
邀请新用户注册赠送积分活动 695092