Exploiting microdistillation and smartphone-based digital-image colorimetry for determination of protein in foods

凯氏定氮法 比色法 RGB颜色模型 化学 数字图像 检出限 色谱法 数学 人工智能 计算机科学 图像处理 氮气 有机化学 图像(数学)
作者
Isabela Camargo Gonçalves,Samara Soares,Fábio R.P. Rocha
出处
期刊:Microchemical Journal [Elsevier BV]
卷期号:188: 108461-108461 被引量:6
标识
DOI:10.1016/j.microc.2023.108461
摘要

Because of their nutritional importance and industrial interest, determination of proteins is usual in food quality control. The Kjeldahl method, the most usual for protein determination and a reference to other indirect methods, is time-consuming and generates significant amounts of waste. Aiming to circumvent these drawbacks, this work proposes a simple, cost-effective, and more environmental friendly procedure based on microdistillation of the ammonium from Kjeldahl digests, absorption on an acid-base indicator solution, and digital-image colorimetry for protein determination in food. Microdistillation was carried out in a simple and inexpensive lab-made apparatus. The digital images were acquired by a smartphone camera under controlled illumination and the intensity of the reflected radiation was converted to the RGB color system using a free app (PhotoMetrix®). Measurements were based on the color change of phenol red from yellow to pink and the G channel (corresponding to the complementary color of the dissociated indicator) was taken as analytical response. A linear response was achieved within 5.0–50.0 mg/L ammonium, equivalent to 0.003–0.03 % protein (r = 0.996), as confirmed by the lack-of-fit test at the 95 % confidence level. Coefficient of variation (n = 10) and limit of detection (99.7 % confidence level) were estimated at 2.3 % and 2 mg kg−1 protein, respectively. A sample throughput of 12 h−1 was achieved with simultaneous sample processing. Protein amounts determined in foods of animal (milk) and vegetal (beans and lentils) origin yielded results in agreement with the micro-Kjeldahl reference procedure at the 95 % confidence level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
aaaaa发布了新的文献求助10
1秒前
jusser发布了新的文献求助10
1秒前
2秒前
缥缈的青旋完成签到,获得积分10
2秒前
烟花应助aaa采纳,获得10
3秒前
满眼星辰完成签到,获得积分10
3秒前
3秒前
ding应助潘fujun采纳,获得20
4秒前
不吃了发布了新的文献求助10
4秒前
4秒前
koala发布了新的文献求助10
4秒前
CodeCraft应助风诺儿采纳,获得10
5秒前
6秒前
zizilu完成签到,获得积分10
6秒前
川帅发布了新的文献求助10
6秒前
桐桐应助yyf采纳,获得10
7秒前
7秒前
小凤完成签到 ,获得积分10
7秒前
瑾涵发布了新的文献求助10
8秒前
Zzz完成签到 ,获得积分10
9秒前
深情安青应助YL采纳,获得10
9秒前
10秒前
大个应助于采文采纳,获得10
10秒前
orixero应助hob采纳,获得10
11秒前
李浩发布了新的文献求助10
11秒前
qc发布了新的文献求助10
11秒前
彭于晏应助CC采纳,获得10
12秒前
英俊的铭应助激昂的青烟采纳,获得10
12秒前
Liangyu完成签到,获得积分10
12秒前
无奈凝莲发布了新的文献求助10
13秒前
Sylvia发布了新的文献求助10
14秒前
昭荃完成签到 ,获得积分0
14秒前
14秒前
15秒前
15秒前
16秒前
大型海狮完成签到,获得积分10
16秒前
llw完成签到,获得积分10
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755446
求助须知:如何正确求助?哪些是违规求助? 3298590
关于积分的说明 10106236
捐赠科研通 3013261
什么是DOI,文献DOI怎么找? 1655052
邀请新用户注册赠送积分活动 789418
科研通“疑难数据库(出版商)”最低求助积分说明 753286