Exploiting microdistillation and smartphone-based digital-image colorimetry for determination of protein in foods

凯氏定氮法 比色法 RGB颜色模型 化学 数字图像 检出限 色谱法 数学 人工智能 计算机科学 图像处理 氮气 图像(数学) 有机化学
作者
Isabela Camargo Gonçalves,Samara Soares,Fábio R.P. Rocha
出处
期刊:Microchemical Journal [Elsevier]
卷期号:188: 108461-108461 被引量:6
标识
DOI:10.1016/j.microc.2023.108461
摘要

Because of their nutritional importance and industrial interest, determination of proteins is usual in food quality control. The Kjeldahl method, the most usual for protein determination and a reference to other indirect methods, is time-consuming and generates significant amounts of waste. Aiming to circumvent these drawbacks, this work proposes a simple, cost-effective, and more environmental friendly procedure based on microdistillation of the ammonium from Kjeldahl digests, absorption on an acid-base indicator solution, and digital-image colorimetry for protein determination in food. Microdistillation was carried out in a simple and inexpensive lab-made apparatus. The digital images were acquired by a smartphone camera under controlled illumination and the intensity of the reflected radiation was converted to the RGB color system using a free app (PhotoMetrix®). Measurements were based on the color change of phenol red from yellow to pink and the G channel (corresponding to the complementary color of the dissociated indicator) was taken as analytical response. A linear response was achieved within 5.0–50.0 mg/L ammonium, equivalent to 0.003–0.03 % protein (r = 0.996), as confirmed by the lack-of-fit test at the 95 % confidence level. Coefficient of variation (n = 10) and limit of detection (99.7 % confidence level) were estimated at 2.3 % and 2 mg kg−1 protein, respectively. A sample throughput of 12 h−1 was achieved with simultaneous sample processing. Protein amounts determined in foods of animal (milk) and vegetal (beans and lentils) origin yielded results in agreement with the micro-Kjeldahl reference procedure at the 95 % confidence level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
yangmin完成签到,获得积分10
1秒前
2秒前
李志雄发布了新的文献求助10
2秒前
3秒前
风飘絮舞发布了新的文献求助10
4秒前
小木子发布了新的文献求助10
5秒前
传奇3应助奋斗向南采纳,获得10
5秒前
liyiran发布了新的文献求助30
5秒前
5秒前
mmf发布了新的文献求助10
5秒前
犹豫山菡完成签到,获得积分10
6秒前
阔达芾完成签到,获得积分10
6秒前
FashionBoy应助dalibaba采纳,获得10
6秒前
念安发布了新的文献求助10
6秒前
7秒前
7秒前
kk发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
领导范儿应助心信鑫采纳,获得10
9秒前
浮游应助偏偏采纳,获得10
9秒前
科研通AI6应助NGU采纳,获得10
9秒前
nonosense发布了新的文献求助10
9秒前
夹心发布了新的文献求助10
9秒前
9秒前
12秒前
丘比特应助小木子采纳,获得10
12秒前
12秒前
汤圆关注了科研通微信公众号
12秒前
cjdsb发布了新的文献求助10
12秒前
13秒前
wxy发布了新的文献求助10
13秒前
13秒前
14秒前
巴黎的防发布了新的文献求助10
14秒前
英俊的铭应助温馨采纳,获得10
15秒前
佳银完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461138
求助须知:如何正确求助?哪些是违规求助? 4566175
关于积分的说明 14303831
捐赠科研通 4491884
什么是DOI,文献DOI怎么找? 2460490
邀请新用户注册赠送积分活动 1449811
关于科研通互助平台的介绍 1425582