Structural design and high temperature tribological behavior of a new turbine blade tip protective coating

材料科学 涂层 摩擦学 摩擦学 复合材料 磨料 脆性 微观结构 压痕硬度 扫描电子显微镜 图层(电子) 尼亚尔 冶金 金属间化合物 合金 陶瓷
作者
Shuai Yang,Siyang Gao,Weihai Xue,Bi Wu,Deli Duan
出处
期刊:Surface & Coatings Technology [Elsevier]
卷期号:457: 129316-129316 被引量:7
标识
DOI:10.1016/j.surfcoat.2023.129316
摘要

Severe damage to the blade tip usually occurs when the turbine blade tip scratches against the abradable coating. Therefore, blade tip strengthening is a hot research topic. To improve the wear resistance of turbine blade tips, NiAlTa coatings were prepared on K417G superalloy by electro spark deposition. The microstructure and phase composition of the coating were analyzed by scanning electron microscope and X-ray diffraction. Microhardness tester and scratch method were used to test the microhardness and bonding strength of the coating. Using ZrO2 balls as friction pair, the tribological behavior and wear mechanism of the coating were investigated by a self-developed tribometer at 25 °C and 800 °C. The NiAlTa coating mainly consists of the β phase NiAl and the laves phase NiTaAl. The laves phase NiTaAl encapsulates the NiAl phase, and this plant-like "cell wall" structure endows the coating with excellent mechanical properties, wear resistance, and cutting performance. Compared with the substrate, NiAlTa coating has higher microhardness (~797.18 HV0.2) and lower wear rate (~10−6 mm3·N−1·m−1). The wear process of NiAlTa coatings is dominated by plastic deformation, with little evidence of material loss from the brittle fracture. The competition between the anti-wear lubricating effect of the "glaze" layer and the plowing effect of oxides and ZrO2 debris affects the tribological behavior of the coating. The cutting performance of the NiAlTa coating can be attributed to the two-body or three-body abrasive wear caused by the oxides and ZrO2 debris embedded in the "glaze" layer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI2S应助WWW采纳,获得10
1秒前
1秒前
尉迟秋完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
wang发布了新的文献求助20
2秒前
周周关注了科研通微信公众号
2秒前
HaiKing发布了新的文献求助10
3秒前
丁真先生完成签到,获得积分10
3秒前
Ustinian发布了新的文献求助30
3秒前
刘yuer发布了新的文献求助10
5秒前
小蘑菇应助李李李采纳,获得10
5秒前
5秒前
懦弱的man完成签到,获得积分10
7秒前
7秒前
7秒前
zz发布了新的文献求助10
8秒前
8秒前
8秒前
李爱国应助nml采纳,获得10
8秒前
111发布了新的文献求助10
8秒前
研友_Z119gZ发布了新的文献求助10
8秒前
小猫发布了新的文献求助10
8秒前
9秒前
会撒娇的电源完成签到,获得积分10
9秒前
深情安青应助如意大侠采纳,获得10
10秒前
钢蛋发布了新的文献求助20
11秒前
11秒前
清歌发布了新的文献求助10
12秒前
可乐发布了新的文献求助10
12秒前
12秒前
konglong完成签到,获得积分10
13秒前
13秒前
ffff应助地狱跳跳虎采纳,获得10
14秒前
TAN完成签到,获得积分10
14秒前
HT完成签到,获得积分10
16秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145542
求助须知:如何正确求助?哪些是违规求助? 2796967
关于积分的说明 7822284
捐赠科研通 2453262
什么是DOI,文献DOI怎么找? 1305570
科研通“疑难数据库(出版商)”最低求助积分说明 627512
版权声明 601464