Structural design and high temperature tribological behavior of a new turbine blade tip protective coating

材料科学 涂层 摩擦学 摩擦学 复合材料 磨料 脆性 微观结构 压痕硬度 扫描电子显微镜 图层(电子) 尼亚尔 冶金 金属间化合物 合金 陶瓷
作者
Shuai Yang,Siyang Gao,Weihai Xue,Bi Wu,Deli Duan
出处
期刊:Surface & Coatings Technology [Elsevier BV]
卷期号:457: 129316-129316 被引量:7
标识
DOI:10.1016/j.surfcoat.2023.129316
摘要

Severe damage to the blade tip usually occurs when the turbine blade tip scratches against the abradable coating. Therefore, blade tip strengthening is a hot research topic. To improve the wear resistance of turbine blade tips, NiAlTa coatings were prepared on K417G superalloy by electro spark deposition. The microstructure and phase composition of the coating were analyzed by scanning electron microscope and X-ray diffraction. Microhardness tester and scratch method were used to test the microhardness and bonding strength of the coating. Using ZrO2 balls as friction pair, the tribological behavior and wear mechanism of the coating were investigated by a self-developed tribometer at 25 °C and 800 °C. The NiAlTa coating mainly consists of the β phase NiAl and the laves phase NiTaAl. The laves phase NiTaAl encapsulates the NiAl phase, and this plant-like "cell wall" structure endows the coating with excellent mechanical properties, wear resistance, and cutting performance. Compared with the substrate, NiAlTa coating has higher microhardness (~797.18 HV0.2) and lower wear rate (~10−6 mm3·N−1·m−1). The wear process of NiAlTa coatings is dominated by plastic deformation, with little evidence of material loss from the brittle fracture. The competition between the anti-wear lubricating effect of the "glaze" layer and the plowing effect of oxides and ZrO2 debris affects the tribological behavior of the coating. The cutting performance of the NiAlTa coating can be attributed to the two-body or three-body abrasive wear caused by the oxides and ZrO2 debris embedded in the "glaze" layer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
qin123完成签到 ,获得积分10
1秒前
1秒前
1秒前
ac完成签到,获得积分10
2秒前
天真涵双发布了新的文献求助10
2秒前
jia完成签到,获得积分10
3秒前
种桃老总完成签到,获得积分10
3秒前
4秒前
小鱼完成签到,获得积分10
4秒前
非要叫我起个昵称完成签到,获得积分10
4秒前
4秒前
隐形曼青应助ddy采纳,获得10
5秒前
yun完成签到 ,获得积分10
5秒前
ardejiang发布了新的文献求助10
5秒前
5秒前
alu发布了新的文献求助10
5秒前
小马甲应助科研达人采纳,获得10
5秒前
Dzexin发布了新的文献求助10
6秒前
小小小小完成签到,获得积分20
6秒前
6秒前
6秒前
6秒前
康康发布了新的文献求助10
7秒前
7秒前
小鱼发布了新的文献求助10
7秒前
7秒前
7秒前
zsh完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
无花果应助天真涵双采纳,获得10
8秒前
夏爽2023完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559435
求助须知:如何正确求助?哪些是违规求助? 3985900
关于积分的说明 12340835
捐赠科研通 3656514
什么是DOI,文献DOI怎么找? 2014495
邀请新用户注册赠送积分活动 1049235
科研通“疑难数据库(出版商)”最低求助积分说明 937558