UAV Mission Path Planning Based on Reinforcement Learning in Dynamic Environment

运动规划 强化学习 无人机 地形 任务(项目管理) 计算机科学 路径(计算) 实时计算 机器人 人工智能 模拟 运筹学 工程类 系统工程 地理 生物 地图学 遗传学 程序设计语言
作者
Gui Fu,Yang Gao,Liwen Liu,Mingye Yang,Xinyu Zhu
出处
期刊:Journal of function spaces [Hindawi Limited]
卷期号:2023: 1-11 被引量:1
标识
DOI:10.1155/2023/9708143
摘要

With the rapid development of information technology, various products used in information technology are also constantly optimized. Among them, the task and path planning of UAV in the high-end robot industry has always been the focus of relevant researchers. In the high-end robot industry, in addition to the research and development of UAVs, they also continue to learn and strengthen the task and path planning of UAVs. Nowadays, using unmanned aerial vehicles for real-time shooting has become the trend of this era. Drones have brought great convenience to people’s lives, and more and more people are willing to use drones. Based on the above situation, this paper studies the task and path planning of UAV based on reinforcement learning in dynamic environment. In the case of unpredictable scene parameters, reinforcement learning method can be established by value function. Thus, a more reasonable path can be given to realize the reconnaissance and detection of points of interest. MATLAB simulation experiments show that the algorithm can effectively detect targets in complex terrain composed of terrain restricted areas, and return to the designated end point to complete communication. Firstly, the development of unmanned aerial vehicles in various countries and the social status of unmanned aerial vehicles are discussed. By making UAV build threat model and task allocation in dynamic environment. The path planning and optimization of UAV in dynamic environment is studied, and the path planning algorithm and Hungarian algorithm are added. The optimized UAV has the fastest data transmission and calculation speed, while the other two types of UAVs have slower data transmission and calculation speed. In particular, ordinary UAVs also have data transmission failures, resulting in incomplete experimental results. The results show that the optimized UAV system is better in data calculation and transmission, which also shows that the UAV can quickly plan and process flight paths, which is suitable for practical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助斑ban采纳,获得10
1秒前
沉静完成签到 ,获得积分10
3秒前
Julia完成签到 ,获得积分10
4秒前
含蓄冰蓝完成签到,获得积分10
4秒前
5秒前
5秒前
7秒前
圆彰七大完成签到 ,获得积分10
8秒前
含蓄冰蓝发布了新的文献求助10
9秒前
10秒前
yy完成签到,获得积分10
11秒前
快乐的小胖完成签到,获得积分10
13秒前
yy完成签到,获得积分10
15秒前
混合结构完成签到 ,获得积分10
17秒前
斑ban发布了新的文献求助10
17秒前
深情安青应助yy采纳,获得10
18秒前
20秒前
kid发布了新的文献求助10
25秒前
lizishu举报典雅的灵煌求助涉嫌违规
28秒前
temaxs完成签到 ,获得积分10
31秒前
华仔应助大胆夏兰采纳,获得10
32秒前
完美世界应助kid采纳,获得10
33秒前
凶狠的姚完成签到 ,获得积分10
33秒前
38秒前
42秒前
潇洒斑马完成签到 ,获得积分10
43秒前
rui完成签到 ,获得积分10
55秒前
55秒前
科研通AI2S应助美琦采纳,获得10
57秒前
光亮的睿渊完成签到 ,获得积分10
58秒前
Forever完成签到 ,获得积分10
59秒前
SSY完成签到 ,获得积分10
59秒前
Dr.c发布了新的文献求助10
1分钟前
xiaosi完成签到 ,获得积分10
1分钟前
叮叮当当发布了新的文献求助200
1分钟前
科研通AI6.1应助Chengcheng采纳,获得10
1分钟前
TKTK发布了新的文献求助30
1分钟前
花泽秀完成签到,获得积分10
1分钟前
1分钟前
TKTK完成签到,获得积分10
1分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847567
求助须知:如何正确求助?哪些是违规求助? 6227695
关于积分的说明 15620595
捐赠科研通 4964265
什么是DOI,文献DOI怎么找? 2676537
邀请新用户注册赠送积分活动 1621054
关于科研通互助平台的介绍 1576998