UAV Mission Path Planning Based on Reinforcement Learning in Dynamic Environment

运动规划 强化学习 无人机 地形 任务(项目管理) 计算机科学 路径(计算) 实时计算 机器人 人工智能 模拟 运筹学 工程类 系统工程 地理 地图学 生物 遗传学 程序设计语言
作者
Gui Fu,Yang Gao,Liwen Liu,Mingye Yang,Xinyu Zhu
出处
期刊:Journal of function spaces [Hindawi Limited]
卷期号:2023: 1-11 被引量:1
标识
DOI:10.1155/2023/9708143
摘要

With the rapid development of information technology, various products used in information technology are also constantly optimized. Among them, the task and path planning of UAV in the high-end robot industry has always been the focus of relevant researchers. In the high-end robot industry, in addition to the research and development of UAVs, they also continue to learn and strengthen the task and path planning of UAVs. Nowadays, using unmanned aerial vehicles for real-time shooting has become the trend of this era. Drones have brought great convenience to people’s lives, and more and more people are willing to use drones. Based on the above situation, this paper studies the task and path planning of UAV based on reinforcement learning in dynamic environment. In the case of unpredictable scene parameters, reinforcement learning method can be established by value function. Thus, a more reasonable path can be given to realize the reconnaissance and detection of points of interest. MATLAB simulation experiments show that the algorithm can effectively detect targets in complex terrain composed of terrain restricted areas, and return to the designated end point to complete communication. Firstly, the development of unmanned aerial vehicles in various countries and the social status of unmanned aerial vehicles are discussed. By making UAV build threat model and task allocation in dynamic environment. The path planning and optimization of UAV in dynamic environment is studied, and the path planning algorithm and Hungarian algorithm are added. The optimized UAV has the fastest data transmission and calculation speed, while the other two types of UAVs have slower data transmission and calculation speed. In particular, ordinary UAVs also have data transmission failures, resulting in incomplete experimental results. The results show that the optimized UAV system is better in data calculation and transmission, which also shows that the UAV can quickly plan and process flight paths, which is suitable for practical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lucky完成签到,获得积分10
1秒前
Clara完成签到,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
烂漫铃铛发布了新的文献求助10
3秒前
无花果应助俏皮的冬云采纳,获得20
3秒前
chen完成签到 ,获得积分10
3秒前
花飞飞凡发布了新的文献求助10
3秒前
lu发布了新的文献求助10
3秒前
4秒前
科研通AI6应助HuiYmao采纳,获得10
4秒前
坚定芯完成签到 ,获得积分10
4秒前
冯珂发布了新的文献求助10
5秒前
田様应助77采纳,获得10
5秒前
yn完成签到,获得积分10
5秒前
小辰完成签到,获得积分10
5秒前
贤惠的数据线完成签到,获得积分10
5秒前
独特秋双发布了新的文献求助10
6秒前
6秒前
wang完成签到,获得积分10
7秒前
生物科研小白完成签到 ,获得积分10
7秒前
小蘑菇应助Xavier采纳,获得30
7秒前
9秒前
温柔樱桃发布了新的文献求助10
9秒前
10秒前
10秒前
坚强的孤丹完成签到,获得积分20
10秒前
oue发布了新的文献求助10
10秒前
11秒前
传奇3应助lu采纳,获得10
12秒前
嘿嘿完成签到,获得积分10
13秒前
FashionBoy应助小壮采纳,获得10
13秒前
13秒前
shadow完成签到,获得积分10
13秒前
在水一方应助属下存在感采纳,获得10
13秒前
明亮夏旋完成签到,获得积分10
14秒前
14秒前
msw发布了新的文献求助10
14秒前
Betty发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836