UAV Mission Path Planning Based on Reinforcement Learning in Dynamic Environment

运动规划 强化学习 无人机 地形 任务(项目管理) 计算机科学 路径(计算) 实时计算 机器人 人工智能 模拟 运筹学 工程类 系统工程 地理 生物 地图学 遗传学 程序设计语言
作者
Gui Fu,Yang Gao,Liwen Liu,Mingye Yang,Xinyu Zhu
出处
期刊:Journal of function spaces [Hindawi Limited]
卷期号:2023: 1-11 被引量:1
标识
DOI:10.1155/2023/9708143
摘要

With the rapid development of information technology, various products used in information technology are also constantly optimized. Among them, the task and path planning of UAV in the high-end robot industry has always been the focus of relevant researchers. In the high-end robot industry, in addition to the research and development of UAVs, they also continue to learn and strengthen the task and path planning of UAVs. Nowadays, using unmanned aerial vehicles for real-time shooting has become the trend of this era. Drones have brought great convenience to people’s lives, and more and more people are willing to use drones. Based on the above situation, this paper studies the task and path planning of UAV based on reinforcement learning in dynamic environment. In the case of unpredictable scene parameters, reinforcement learning method can be established by value function. Thus, a more reasonable path can be given to realize the reconnaissance and detection of points of interest. MATLAB simulation experiments show that the algorithm can effectively detect targets in complex terrain composed of terrain restricted areas, and return to the designated end point to complete communication. Firstly, the development of unmanned aerial vehicles in various countries and the social status of unmanned aerial vehicles are discussed. By making UAV build threat model and task allocation in dynamic environment. The path planning and optimization of UAV in dynamic environment is studied, and the path planning algorithm and Hungarian algorithm are added. The optimized UAV has the fastest data transmission and calculation speed, while the other two types of UAVs have slower data transmission and calculation speed. In particular, ordinary UAVs also have data transmission failures, resulting in incomplete experimental results. The results show that the optimized UAV system is better in data calculation and transmission, which also shows that the UAV can quickly plan and process flight paths, which is suitable for practical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QYQ7完成签到,获得积分10
刚刚
刚刚
俞无声完成签到 ,获得积分10
1秒前
wyz完成签到 ,获得积分10
2秒前
3秒前
胡亥儿完成签到,获得积分10
3秒前
5秒前
小巧热狗给小巧热狗的求助进行了留言
6秒前
6秒前
Focus发布了新的文献求助10
8秒前
慕青应助胡亥儿采纳,获得10
9秒前
9秒前
猫毛完成签到,获得积分10
10秒前
11秒前
11秒前
斯文败类应助哈哈采纳,获得10
12秒前
万能图书馆应助哈哈采纳,获得10
13秒前
Dr. LJ完成签到,获得积分10
13秒前
英俊的含蕾完成签到 ,获得积分10
13秒前
Hello应助科研通管家采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
空曲发布了新的文献求助10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得20
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
陈麦子完成签到 ,获得积分10
14秒前
桐桐应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
哦豁应助科研通管家采纳,获得10
15秒前
开心树叶应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
kk驳回了大个应助
15秒前
IceyMY完成签到,获得积分20
17秒前
17秒前
园艺小学生完成签到,获得积分10
19秒前
王红玉完成签到,获得积分10
19秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139874
求助须知:如何正确求助?哪些是违规求助? 2790776
关于积分的说明 7796637
捐赠科研通 2447191
什么是DOI,文献DOI怎么找? 1301692
科研通“疑难数据库(出版商)”最低求助积分说明 626313
版权声明 601194