A Novel Method for Filled/Unfilled Grain Classification Based on Structured Light Imaging and Improved PointNet++

计算机科学 人工智能 分割 模式识别(心理学)
作者
Shihao Huang,Zhihao Lü,Yuxuan Shi,Jiale Dong,Lin Hu,Wanneng Yang,Chenglong Huang
出处
期刊:Sensors [MDPI AG]
卷期号:23 (14): 6331-6331 被引量:1
标识
DOI:10.3390/s23146331
摘要

China is the largest producer and consumer of rice, and the classification of filled/unfilled rice grains is of great significance for rice breeding and genetic analysis. The traditional method for filled/unfilled rice grain identification was generally manual, which had the disadvantages of low efficiency, poor repeatability, and low precision. In this study, we have proposed a novel method for filled/unfilled grain classification based on structured light imaging and Improved PointNet++. Firstly, the 3D point cloud data of rice grains were obtained by structured light imaging. And then the specified processing algorithms were developed for the single grain segmentation, and data enhancement with normal vector. Finally, the PointNet++ network was improved by adding an additional Set Abstraction layer and combining the maximum pooling of normal vectors to realize filled/unfilled rice grain point cloud classification. To verify the model performance, the Improved PointNet++ was compared with six machine learning methods, PointNet and PointConv. The results showed that the optimal machine learning model is XGboost, with a classification accuracy of 91.99%, while the classification accuracy of Improved PointNet++ was 98.50% outperforming the PointNet 93.75% and PointConv 92.25%. In conclusion, this study has demonstrated a novel and effective method for filled/unfilled grain recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Time发布了新的文献求助10
刚刚
可爱芷荷发布了新的文献求助10
1秒前
CipherSage应助aprise采纳,获得10
1秒前
思源应助lym2021采纳,获得10
2秒前
3秒前
4秒前
4秒前
sea2023完成签到,获得积分10
4秒前
5秒前
5秒前
碧蓝巧荷完成签到 ,获得积分10
7秒前
8秒前
8秒前
震动的沉鱼完成签到 ,获得积分10
9秒前
hrq发布了新的文献求助10
9秒前
sea2023发布了新的文献求助10
9秒前
种桃老总发布了新的文献求助10
9秒前
孔雀吃披萨完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
阳光笑颜完成签到,获得积分20
12秒前
冷酷的雁菡完成签到,获得积分20
12秒前
科研通AI2S应助hg0303采纳,获得10
12秒前
小任完成签到,获得积分20
13秒前
哈哈发布了新的文献求助10
13秒前
14秒前
15秒前
16秒前
17秒前
17秒前
哇哦发布了新的文献求助20
17秒前
aprise发布了新的文献求助10
18秒前
18秒前
18秒前
19秒前
Guoqiang发布了新的文献求助10
19秒前
20秒前
20秒前
Guoqiang发布了新的文献求助10
21秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123185
求助须知:如何正确求助?哪些是违规求助? 2773671
关于积分的说明 7719164
捐赠科研通 2429389
什么是DOI,文献DOI怎么找? 1290277
科研通“疑难数据库(出版商)”最低求助积分说明 621803
版权声明 600251