A mini review on the applications of artificial intelligence (AI) in surface chemistry and catalysis

化学 纳米技术 计算机科学 材料科学
作者
Faisal Al-Akayleh,Ahmed S. A. Ali Agha,Rami A. Abdel Rahem,Mayyas Al-Remawi
出处
期刊:Tenside Surfactants Detergents [De Gruyter]
标识
DOI:10.1515/tsd-2024-2580
摘要

Abstract This review critically analyzes the incorporation of artificial intelligence (AI) in surface chemistry and catalysis to emphasize the revolutionary impact of AI techniques in this field. The current review examines various studies that using AI techniques, including machine learning (ML), deep learning (DL), and neural networks (NNs), in surface chemistry and catalysis. It reviews the literature on the application of AI models in predicting adsorption behaviours, analyzing spectroscopic data, and improving catalyst screening processes. It combines both theoretical and empirical studies to provide a comprehensive synthesis of the findings. It demonstrates that AI applications have made remarkable progress in predicting the properties of nanostructured catalysts, discovering new materials for energy conversion, and developing efficient bimetallic catalysts for CO 2 reduction. AI-based analyses, particularly using advanced NNs, have provided significant insights into the mechanisms and dynamics of catalytic reactions. It will be shown that AI plays a crucial role in surface chemistry and catalysis by significantly accelerating discovery and enhancing process optimization, resulting in enhanced efficiency and selectivity. This mini-review highlights the challenges of data quality, model interpretability, scalability, and ethical, and environmental concerns in AI-driven research. It highlights the importance of continued methodological advancements and responsible implementation of artificial intelligence in catalysis research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内向南风完成签到 ,获得积分10
刚刚
1秒前
大炮台完成签到,获得积分10
1秒前
周曦完成签到,获得积分10
1秒前
霁霁犇发布了新的文献求助10
1秒前
lianliyou发布了新的文献求助10
1秒前
无敌石墨烯完成签到 ,获得积分0
2秒前
duoduo完成签到,获得积分10
2秒前
organoid elegan完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
4秒前
昔年若许完成签到,获得积分10
4秒前
良月一三完成签到,获得积分10
5秒前
keyanfeiwu完成签到 ,获得积分10
5秒前
fjsfff完成签到,获得积分10
6秒前
6秒前
dududu发布了新的文献求助10
6秒前
笨笨翰完成签到,获得积分10
7秒前
7秒前
无名发布了新的文献求助10
7秒前
7秒前
壮观的夏蓉完成签到,获得积分10
7秒前
今后应助一马奔腾采纳,获得10
7秒前
星辰大海应助今夕何夕采纳,获得10
8秒前
ACOY应助研蔚采纳,获得10
8秒前
9秒前
hhh完成签到,获得积分10
9秒前
pluto应助lizhaonian采纳,获得60
10秒前
10秒前
240325发布了新的文献求助30
10秒前
10秒前
影子发布了新的文献求助20
11秒前
科研通AI2S应助hcw采纳,获得10
11秒前
11秒前
12秒前
英俊的铭应助OHDJSZMS采纳,获得10
13秒前
生动的映菱完成签到,获得积分20
13秒前
852应助SCI的豆采纳,获得10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307775
求助须知:如何正确求助?哪些是违规求助? 2941238
关于积分的说明 8502216
捐赠科研通 2615741
什么是DOI,文献DOI怎么找? 1429103
科研通“疑难数据库(出版商)”最低求助积分说明 663660
邀请新用户注册赠送积分活动 648617