Robust Feature Learning and Global Variance-Driven Classifier Alignment for Long-Tail Class Incremental Learning

计算机科学 人工智能 分类器(UML) 机器学习 模式识别(心理学)
作者
Jayateja Kalla,Soma Biswas
标识
DOI:10.1109/wacv57701.2024.00011
摘要

This paper introduces a two-stage framework designed to enhance long-tail class incremental learning, enabling the model to progressively learn new classes, while mitigating catastrophic forgetting in the context of long-tailed data distributions. Addressing the challenge posed by the under-representation of tail classes in long-tail class incremental learning, our approach achieves classifier alignment by leveraging global variance as an informative measure and class prototypes in the second stage. This process effectively captures class properties and eliminates the need for data balancing or additional layer tuning. Alongside traditional class incremental learning losses in the first stage, the proposed approach incorporates mixup classes to learn robust feature representations, ensuring smoother boundaries. The proposed framework can seamlessly integrate as a module with any class incremental learning method to effectively handle long-tail class incremental learning scenarios. Extensive experimentation on the CIFAR-100 and ImageNet-Subset datasets validates the approach's efficacy, showcasing its superiority over state-of-the-art techniques across various long-tail CIL settings. Code is available at https://github.com/JAYATEJAK/GVAlign.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在炸乌云完成签到,获得积分10
刚刚
poegtam发布了新的文献求助10
1秒前
极度厌蠢完成签到,获得积分0
1秒前
无私文博完成签到,获得积分10
2秒前
桐桐应助若尘采纳,获得10
2秒前
weixun发布了新的文献求助10
3秒前
悦耳静枫完成签到,获得积分10
4秒前
Scarlett发布了新的文献求助10
5秒前
gaoyayaaa完成签到,获得积分20
5秒前
Lucas发布了新的文献求助10
5秒前
5秒前
8秒前
兴奋柠檬完成签到,获得积分20
8秒前
10秒前
传奇3应助科研通管家采纳,获得20
10秒前
夏筱应助科研通管家采纳,获得10
10秒前
tuanheqi应助科研通管家采纳,获得50
10秒前
今后应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
pluto应助科研通管家采纳,获得50
11秒前
11秒前
格茸发布了新的文献求助10
15秒前
poegtam完成签到,获得积分10
15秒前
Arthur完成签到,获得积分10
16秒前
17秒前
打火机说的很对完成签到,获得积分10
18秒前
18秒前
汉堡包应助zxp采纳,获得30
18秒前
20秒前
脑洞疼应助潘潘潘采纳,获得10
21秒前
22秒前
22秒前
22秒前
小羊发布了新的文献求助10
23秒前
23秒前
24秒前
easterway发布了新的文献求助10
24秒前
科研八戒发布了新的文献求助10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309767
求助须知:如何正确求助?哪些是违规求助? 2943014
关于积分的说明 8512004
捐赠科研通 2618059
什么是DOI,文献DOI怎么找? 1430795
科研通“疑难数据库(出版商)”最低求助积分说明 664310
邀请新用户注册赠送积分活动 649468