FVW: Finding Valuable Weight on Deep Neural Network for Model Pruning

计算机科学 深度学习 修剪 人工智能 人工神经网络 机器学习 过程(计算) 软件部署 一致性(知识库) 深层神经网络 推论 软件工程 农学 生物 操作系统
作者
Zhiyu Zhu,Huaming Chen,Zhibo Jin,Xinyi Wang,J. Z. Zhang,Minhui Xue,Qinghua Lu,Jun Shen,Kim‐Kwang Raymond Choo
标识
DOI:10.1145/3583780.3614889
摘要

The rapid development of deep learning has demonstrated its potential for deployment in many intelligent service systems. However, some issues such as optimisation (e.g., how to reduce the deployment resources costs and further improve the detection speed), especially in scenarios where limited resources are available, remain challenging to address. In this paper, we aim to delve into the principles of deep neural networks, focusing on the importance of network neurons. The goal is to identify the neurons that exert minimal impact on model performances, thereby aiding in the process of model pruning. In this work, we have thoroughly considered the deep learning model pruning process with and without fine-tuning step, ensuring the model performance consistency. To achieve our objectives, we propose a methodology that employs adversarial attack methods to explore deep neural network parameters. This approach is combined with an innovative attribution algorithm to analyse the level of network neurons involvement. In our experiments, our approach can effectively quantify the importance of network neuron. We extend the evaluation through comprehensive experiments conducted on a range of datasets, including CIFAR-10, CIFAR-100 and Caltech101. The results demonstrate that, our method have consistently achieved the state-of-the-art performance over many existing methods. We anticipate that this work will help to reduce the heavy training and inference cost of deep neural network models where a lightweight deep learning enhanced service and system is possible. The source code is open source at https://github.com/LMBTough/FVW.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助Rrr采纳,获得10
刚刚
小蝴蝶完成签到 ,获得积分10
刚刚
赤邪发布了新的文献求助10
1秒前
dingdong发布了新的文献求助10
1秒前
爆米花应助phil采纳,获得10
2秒前
科研通AI5应助wang采纳,获得10
2秒前
3秒前
3秒前
Wxx发布了新的文献求助10
3秒前
兜兜完成签到,获得积分10
4秒前
dingdong发布了新的文献求助10
4秒前
4秒前
yuan发布了新的文献求助20
5秒前
HUAJIAO完成签到,获得积分10
5秒前
街舞腹肌修道帅哥完成签到,获得积分10
5秒前
zhangyulu完成签到 ,获得积分10
6秒前
6秒前
独特不斜完成签到,获得积分10
6秒前
海底落日发布了新的文献求助30
6秒前
共享精神应助紧张的妖妖采纳,获得10
6秒前
耶耶粘豆包完成签到 ,获得积分10
7秒前
dingdong发布了新的文献求助10
8秒前
xunxunmimi发布了新的文献求助50
8秒前
Z小姐发布了新的文献求助10
8秒前
幽壑之潜蛟应助123采纳,获得10
9秒前
是天使呢发布了新的文献求助10
9秒前
9秒前
研友_VZG7GZ应助坨坨西州采纳,获得10
10秒前
10秒前
华华完成签到,获得积分10
10秒前
刘明发布了新的文献求助10
10秒前
1604531786发布了新的文献求助10
12秒前
魁梧的小霸王完成签到,获得积分10
12秒前
星辰大海应助123采纳,获得10
12秒前
12秒前
是一只象完成签到,获得积分20
12秒前
科研通AI5应助海鸥海鸥采纳,获得10
13秒前
幸福遥完成签到,获得积分10
14秒前
14秒前
小王发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794