FVW: Finding Valuable Weight on Deep Neural Network for Model Pruning

计算机科学 深度学习 修剪 人工智能 人工神经网络 机器学习 过程(计算) 软件部署 一致性(知识库) 深层神经网络 推论 软件工程 农学 生物 操作系统
作者
Zhiyu Zhu,Huaming Chen,Zhibo Jin,Xinyi Wang,J. Z. Zhang,Minhui Xue,Qinghua Lu,Jun Shen,Kim‐Kwang Raymond Choo
标识
DOI:10.1145/3583780.3614889
摘要

The rapid development of deep learning has demonstrated its potential for deployment in many intelligent service systems. However, some issues such as optimisation (e.g., how to reduce the deployment resources costs and further improve the detection speed), especially in scenarios where limited resources are available, remain challenging to address. In this paper, we aim to delve into the principles of deep neural networks, focusing on the importance of network neurons. The goal is to identify the neurons that exert minimal impact on model performances, thereby aiding in the process of model pruning. In this work, we have thoroughly considered the deep learning model pruning process with and without fine-tuning step, ensuring the model performance consistency. To achieve our objectives, we propose a methodology that employs adversarial attack methods to explore deep neural network parameters. This approach is combined with an innovative attribution algorithm to analyse the level of network neurons involvement. In our experiments, our approach can effectively quantify the importance of network neuron. We extend the evaluation through comprehensive experiments conducted on a range of datasets, including CIFAR-10, CIFAR-100 and Caltech101. The results demonstrate that, our method have consistently achieved the state-of-the-art performance over many existing methods. We anticipate that this work will help to reduce the heavy training and inference cost of deep neural network models where a lightweight deep learning enhanced service and system is possible. The source code is open source at https://github.com/LMBTough/FVW.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如果有风来完成签到,获得积分10
1秒前
高文强完成签到 ,获得积分10
1秒前
明天过后完成签到,获得积分10
3秒前
yinshan完成签到 ,获得积分10
3秒前
爱科研的小虞完成签到 ,获得积分10
4秒前
Hudson完成签到,获得积分10
5秒前
大大大大宝凌完成签到,获得积分10
13秒前
bohn123完成签到 ,获得积分10
14秒前
C_Li完成签到,获得积分10
16秒前
小白果果完成签到,获得积分10
18秒前
人文完成签到 ,获得积分10
18秒前
LXZ完成签到,获得积分10
18秒前
上官完成签到 ,获得积分10
20秒前
Cai完成签到,获得积分10
22秒前
zdy完成签到,获得积分10
23秒前
乔砖家应助CL837809486采纳,获得10
24秒前
25秒前
25秒前
陈_Ccc完成签到 ,获得积分10
25秒前
26秒前
南风知我意完成签到,获得积分10
27秒前
DXDXJX完成签到 ,获得积分10
30秒前
h41692011完成签到 ,获得积分10
31秒前
coven发布了新的文献求助30
31秒前
sciforce完成签到,获得积分10
32秒前
量子星尘发布了新的文献求助10
34秒前
大雪完成签到 ,获得积分10
36秒前
浮尘完成签到 ,获得积分0
37秒前
38秒前
38秒前
xzy998应助科研通管家采纳,获得10
38秒前
搞怪的白竹完成签到,获得积分10
41秒前
42秒前
孤独箴言完成签到 ,获得积分10
46秒前
Lamis完成签到 ,获得积分10
49秒前
还行吧完成签到 ,获得积分10
49秒前
风起枫落完成签到 ,获得积分10
52秒前
西扬完成签到 ,获得积分10
52秒前
FashionBoy应助yqcj455采纳,获得10
53秒前
h w wang完成签到,获得积分10
57秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015603
求助须知:如何正确求助?哪些是违规求助? 3555597
关于积分的说明 11318138
捐赠科研通 3288782
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015