清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multimodal data fusion for supervised learning-based identification of USP7 inhibitors: a systematic comparison

计算机科学 机器学习 人工智能 鉴定(生物学) 虚拟筛选 支持向量机 监督学习 数据挖掘 集成学习 药物发现 人工神经网络 生物信息学 植物 生物
作者
Wenfeng Shen,He-Wei Tang,Jia-Bo Li,Xiang Li,Si Chen
出处
期刊:Journal of Cheminformatics [Springer Nature]
卷期号:15 (1) 被引量:8
标识
DOI:10.1186/s13321-022-00675-8
摘要

Ubiquitin-specific-processing protease 7 (USP7) is a promising target protein for cancer therapy, and great attention has been given to the identification of USP7 inhibitors. Traditional virtual screening methods have now been successfully applied to discover USP7 inhibitors aiming at reducing costs and speeding up time in several studies. However, due to their unsatisfactory accuracy, it is still a difficult task to develop USP7 inhibitors. In this study, multiple supervised learning classifiers were built to distinguish active USP7 inhibitors from inactive ligands. Physicochemical descriptors, MACCS keys, ECFP4 fingerprints and SMILES were first calculated to represent the compounds in our in-house dataset. Two deep learning (DL) models and nine classical machine learning (ML) models were then constructed based on different combinations of the above molecular representations under three activity cutoff values, and a total of 15 groups of experiments (75 experiments) were implemented. The performance of the models in these experiments was evaluated, compared and discussed using a variety of metrics. The optimal models are ensemble learning models when the dataset is balanced or severely imbalanced, and SMILES-based DL performs the best when the dataset is slightly imbalanced. Meanwhile, multimodal data fusion in some cases can improve the performance of ML and DL models. In addition, SMOTE, unbiased decoy selection and SMILES enumeration can improve the performance of ML and DL models when the dataset is severely imbalanced, and SMOTE works the best. Our study established highly accurate supervised learning classification models, which would accelerate the development of USP7 inhibitors. Some guidance was also provided for drug researchers in selecting supervised models and molecular representations as well as handling imbalanced datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
21秒前
剑逍遥完成签到 ,获得积分10
46秒前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
digger2023完成签到 ,获得积分10
2分钟前
gwbk完成签到,获得积分10
2分钟前
3分钟前
共享精神应助丹布里采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
IlIIlIlIIIllI应助科研通管家采纳,获得20
4分钟前
大熊完成签到 ,获得积分10
4分钟前
Zzz完成签到,获得积分10
4分钟前
CipherSage应助Zzz采纳,获得10
4分钟前
mzhang2完成签到 ,获得积分10
5分钟前
5分钟前
小迪完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
丹布里发布了新的文献求助10
6分钟前
丹布里完成签到,获得积分10
6分钟前
梓歆完成签到 ,获得积分10
6分钟前
小强完成签到 ,获得积分10
6分钟前
7分钟前
7分钟前
dgcyjvfb完成签到,获得积分10
7分钟前
dgcyjvfb发布了新的文献求助10
7分钟前
沙海沉戈完成签到,获得积分0
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
宇文非笑完成签到 ,获得积分10
10分钟前
11分钟前
情怀应助wdasdas采纳,获得10
12分钟前
12分钟前
wdasdas发布了新的文献求助10
12分钟前
令狐子轩完成签到,获得积分10
12分钟前
无花果应助冷静的青文采纳,获得10
13分钟前
13分钟前
13分钟前
紫熊发布了新的文献求助10
13分钟前
13分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450450
求助须知:如何正确求助?哪些是违规求助? 3045952
关于积分的说明 9003754
捐赠科研通 2734597
什么是DOI,文献DOI怎么找? 1500070
科研通“疑难数据库(出版商)”最低求助积分说明 693334
邀请新用户注册赠送积分活动 691477