Joint Video Denoising and Super-Resolution Network for IoT Cameras

计算机科学 接头(建筑物) 降噪 人工智能 计算机视觉 视频去噪 图像去噪 计算机网络 视频处理 视频跟踪 多视点视频编码 建筑工程 工程类
作者
Liming Ge,Wei Bao,Xinyi Sheng,Dong Yuan,Bing Bing Zhou,Zhiyong Wang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/jiot.2024.3402622
摘要

IoT (Internet of Things) cameras have widely been deployed over the last few years. These cameras are often with limited hardware so that they can only capture noisy videos in low resolution. In this work, we propose the joint video denoising and super-resolution network for IoT cameras, which consists of the noise-robust moving-attention (NRMA) module and the noise-eliminated upsampling (NEU) module. In NRMA, we adopt a coarse-to-fine approach by first extracting the coarse flow and then refining through bi-directional feature propagation among adjacent frames. In NEU, we further utilize inner-frame features for noise-elimination and upsampling. Through this approach, we avoid the negative effects brought by applying denoising and super-resolution in tandem, and enhance the reconstruction of moving objects by the embedded attention layers in NRMA. We conduct our experiments on both synthetic datasets, which utilize existing data with additive white Gaussian noise (AWGN), and a realistic dataset captured using a pair of IoT and professional cameras. Our extensive experimental results demonstrate that our proposed method significantly reduces noise and enhances detail in both types of datasets. Notably, our approach outperforms the state-of-the-art benchmark (RealBasicVSR) by an average of 5.24 dB on the existing datasets (with noise level σ = 20) and by 0.95 dB on the realistic dataset in terms of PSNR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻的亦旋完成签到,获得积分10
刚刚
三三完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
Kivala应助香菜采纳,获得10
2秒前
Bobi发布了新的文献求助10
2秒前
zpf关闭了zpf文献求助
2秒前
米儿完成签到,获得积分10
2秒前
3秒前
上官若男应助清风采纳,获得10
3秒前
廿廿不忘完成签到,获得积分20
3秒前
t通发布了新的文献求助10
3秒前
Vivi完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
知北完成签到,获得积分10
5秒前
5秒前
李怀玉发布了新的文献求助10
6秒前
garden发布了新的文献求助20
7秒前
8秒前
liuxian完成签到 ,获得积分10
8秒前
三虎科研发布了新的文献求助30
9秒前
脑洞疼应助彩色毛巾采纳,获得10
9秒前
科研r发布了新的文献求助10
10秒前
天上人间完成签到,获得积分10
10秒前
10秒前
XW完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
得過且過完成签到 ,获得积分10
12秒前
11111111完成签到,获得积分10
13秒前
汤圆发布了新的文献求助10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
13秒前
所所应助科研通管家采纳,获得10
13秒前
13秒前
烟花应助科研通管家采纳,获得10
13秒前
元昭诩应助科研通管家采纳,获得10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662822
求助须知:如何正确求助?哪些是违规求助? 3223668
关于积分的说明 9752507
捐赠科研通 2933578
什么是DOI,文献DOI怎么找? 1606153
邀请新用户注册赠送积分活动 758307
科研通“疑难数据库(出版商)”最低求助积分说明 734771