Leveraging physics-based and explainable machine learning approaches to quantify the relative contributions of rain and air pollutants to wet deposition

污染物 沉积(地质) 环境科学 降水 清除 酸雨 酸沉积 大气科学 水文学(农业) 气象学 环境化学 土壤科学 化学 地质学 地理 土壤水分 沉积物 有机化学 古生物学 生物化学 岩土工程 抗氧化剂
作者
Young‐Hee Ryu,Seung‐Ki Min
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:: 172980-172980
标识
DOI:10.1016/j.scitotenv.2024.172980
摘要

A quantitative understanding of the roles of rainfall and pollutant concentrations in wet deposition is important because they critically influence terrestrial and aquatic ecosystems. However, their relative contributions to wet deposition, which vary across regions, have not yet been identified. We propose two methods that quantitatively separate the contributions of rain and pollutant concentrations to wet deposition: one is based on simplified equations describing the wet scavenging of pollutants and the other is based on random forest models employing SHapley Additive exPlanations. Three-dimensional long-term air quality simulations from 2003 to 2019 are used as inputs for both the physics-based and machine learning models. Remarkably, the results drawn from the explainable machine learning model are consistent with those from the physics-based approach: overall, rain is a more important limiting factor than pollutant concentrations and the relative contribution of rain is larger than that of pollutants by up to a factor of 3–4 in polluted regions. In polluted regions, pollutant concentrations can remain relatively high even in the presence of precipitation owing to continuous and intense emissions; therefore, wet deposition is limited by rainfall. The contribution of rainfall is larger by 1.5–2.5 than that of pollutant concentrations in regions even with low emissions and this considerably large role of rain suggests that regional or transboundary pollutant transport plays a key role in modulating wet deposition. However, in very remote regions, once the rainfall amount exceeds a certain value, rainfall no longer contributes to increasing wet deposition because atmospheric pollutants are readily removed by rain. So, the contributions of the two factors are comparable in pristine regions. Our results can serve as a basis for explaining interannual variations in wet deposition and for future projections of wet deposition under emission control plans and climate change scenarios across regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
插画想起完成签到,获得积分20
1秒前
萄哥布鸽完成签到,获得积分10
2秒前
3秒前
充电宝应助Ammon采纳,获得10
3秒前
zozo发布了新的文献求助10
4秒前
沉默傲芙发布了新的文献求助10
5秒前
Jasper应助少吃一口采纳,获得10
5秒前
小静静发布了新的文献求助50
5秒前
hao253完成签到,获得积分10
5秒前
Catherine完成签到,获得积分10
5秒前
柳娅茹完成签到,获得积分20
6秒前
zlovej完成签到 ,获得积分10
7秒前
z7完成签到,获得积分10
7秒前
迦佭完成签到,获得积分10
7秒前
小新同学完成签到,获得积分10
8秒前
9秒前
哭泣的海豚完成签到,获得积分10
10秒前
林好事完成签到,获得积分10
10秒前
10秒前
慕青应助llin采纳,获得10
12秒前
AVsecurity应助舒适嘉熙采纳,获得50
14秒前
14秒前
zozo完成签到,获得积分10
14秒前
14秒前
as完成签到,获得积分10
14秒前
赵赵发布了新的文献求助10
14秒前
典雅山槐发布了新的文献求助10
14秒前
lelouch完成签到,获得积分10
16秒前
16秒前
zyn完成签到 ,获得积分10
17秒前
Owen应助怕孤独的唇彩采纳,获得10
18秒前
轻风完成签到,获得积分10
20秒前
22秒前
23秒前
MMMar完成签到 ,获得积分10
23秒前
淡然依凝发布了新的文献求助10
23秒前
23秒前
我是老大应助麦子采纳,获得10
23秒前
九九完成签到 ,获得积分10
23秒前
沉静的凡完成签到,获得积分10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998622
求助须知:如何正确求助?哪些是违规求助? 3538115
关于积分的说明 11273407
捐赠科研通 3277045
什么是DOI,文献DOI怎么找? 1807368
邀请新用户注册赠送积分活动 883854
科研通“疑难数据库(出版商)”最低求助积分说明 810070