亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hydrophobicity Classification of Composite Insulators Based on Light‐Weight Convolutional Neural Networks

卷积神经网络 复合数 计算机科学 人工智能 人工神经网络 模式识别(心理学) 材料科学 机器学习 复合材料
作者
Zhibin Qiu,Zhou Liu,Caibo Liao,Dong Wang,Xiaobin Yu
出处
期刊:Ieej Transactions on Electrical and Electronic Engineering [Wiley]
标识
DOI:10.1002/tee.23683
摘要

To achieve accurate and rapid measurement of the hydrophobicity class (HC) of composite insulators, an intelligent spray image recognition technique based on light-weight convolutional neural networks (CNN) is proposed in this paper. A spray image data set contains clean, contaminated and aged insulators with various illuminations, shooting angles and distances, about 10 400 images of shed surface were collected by spray tests and data augmentation. Five classification models were established by different CNNs, including GoogLeNet, ResNet101, ShuffleNet 0.5×, ShuffleNet 0.25× and MobileNet V2, while the first four of them were pre-trained by ImageNet dataset. These models were trained, validated and tested by spray image data set. Six indexes were designed to evaluate each model and the discriminative regions for classification were visualized by gradient weighted class activation mapping (Grad-CAM) method. The results show that these models can effectively recognize spray images with HC1–HC7 and the light-weight ShuffleNet 0.5× has the best performance, with the classification accuracy of 97.09% for 2022 test images. The Grad-CAM visualizations indicate that the results have high reliability. This study can provide reference for on-line detection and intelligent identification of hydrophobicity levels of composite insulators. © 2022 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助Lemon_ice采纳,获得10
5秒前
JamesPei应助风华笔墨采纳,获得10
28秒前
小二郎应助Fairy采纳,获得10
29秒前
kuoping完成签到,获得积分0
30秒前
32秒前
Lemon_ice发布了新的文献求助10
36秒前
风华笔墨完成签到,获得积分10
38秒前
38秒前
Lemon_ice完成签到,获得积分10
41秒前
风华笔墨发布了新的文献求助10
42秒前
善学以致用应助风华笔墨采纳,获得10
49秒前
1分钟前
lqhccww发布了新的文献求助10
1分钟前
hehe完成签到,获得积分10
1分钟前
lqhccww完成签到,获得积分10
1分钟前
缓慢破茧应助科研通管家采纳,获得10
1分钟前
缓慢破茧应助科研通管家采纳,获得10
1分钟前
枯叶蝶完成签到 ,获得积分10
2分钟前
昭荃完成签到 ,获得积分0
3分钟前
蓄力酥油木完成签到,获得积分10
3分钟前
研友_LkD29n完成签到 ,获得积分10
3分钟前
缓慢破茧应助科研通管家采纳,获得10
3分钟前
科研通AI6应助酥酥采纳,获得10
5分钟前
Affenyi发布了新的文献求助10
5分钟前
烨枫晨曦完成签到,获得积分10
5分钟前
5分钟前
丘比特应助科研通管家采纳,获得10
5分钟前
hhh完成签到 ,获得积分10
6分钟前
白云发布了新的文献求助10
6分钟前
合不着完成签到 ,获得积分10
6分钟前
酥酥完成签到,获得积分10
7分钟前
酥酥发布了新的文献求助10
7分钟前
7分钟前
Jiaru发布了新的文献求助10
7分钟前
犹豫的踏歌完成签到,获得积分10
7分钟前
7分钟前
wanci应助科研通管家采纳,获得10
7分钟前
gugugaga发布了新的文献求助10
8分钟前
Jiaru完成签到,获得积分20
8分钟前
zz完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5245565
求助须知:如何正确求助?哪些是违规求助? 4410920
关于积分的说明 13728857
捐赠科研通 4281266
什么是DOI,文献DOI怎么找? 2349066
邀请新用户注册赠送积分活动 1346155
关于科研通互助平台的介绍 1305017