Hydrophobicity Classification of Composite Insulators Based on Light‐Weight Convolutional Neural Networks

卷积神经网络 复合数 计算机科学 人工智能 人工神经网络 模式识别(心理学) 材料科学 机器学习 复合材料
作者
Zhibin Qiu,Zhou Liu,Caibo Liao,Dong Wang,Xiaobin Yu
出处
期刊:Ieej Transactions on Electrical and Electronic Engineering [Wiley]
标识
DOI:10.1002/tee.23683
摘要

To achieve accurate and rapid measurement of the hydrophobicity class (HC) of composite insulators, an intelligent spray image recognition technique based on light-weight convolutional neural networks (CNN) is proposed in this paper. A spray image data set contains clean, contaminated and aged insulators with various illuminations, shooting angles and distances, about 10 400 images of shed surface were collected by spray tests and data augmentation. Five classification models were established by different CNNs, including GoogLeNet, ResNet101, ShuffleNet 0.5×, ShuffleNet 0.25× and MobileNet V2, while the first four of them were pre-trained by ImageNet dataset. These models were trained, validated and tested by spray image data set. Six indexes were designed to evaluate each model and the discriminative regions for classification were visualized by gradient weighted class activation mapping (Grad-CAM) method. The results show that these models can effectively recognize spray images with HC1–HC7 and the light-weight ShuffleNet 0.5× has the best performance, with the classification accuracy of 97.09% for 2022 test images. The Grad-CAM visualizations indicate that the results have high reliability. This study can provide reference for on-line detection and intelligent identification of hydrophobicity levels of composite insulators. © 2022 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangyuan发布了新的文献求助10
刚刚
俭朴依白完成签到 ,获得积分10
1秒前
1秒前
4秒前
小小米发布了新的文献求助10
5秒前
5秒前
zss完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
hbgsns发布了新的文献求助10
8秒前
无与伦比发布了新的文献求助10
9秒前
Ava应助麦田里的稻香采纳,获得10
9秒前
huwchem发布了新的文献求助10
10秒前
JQ1988发布了新的文献求助10
11秒前
谨慎文龙发布了新的文献求助10
11秒前
gxhyuanhe发布了新的文献求助10
11秒前
11秒前
Ali发布了新的文献求助10
12秒前
天天快乐应助max采纳,获得10
12秒前
yy发布了新的文献求助30
12秒前
13秒前
13秒前
初闻完成签到,获得积分10
13秒前
13秒前
烟花应助瘦瘦乌龟采纳,获得10
14秒前
zhangmaomao完成签到 ,获得积分10
14秒前
cm2303发布了新的文献求助10
14秒前
彩虹毛毛虫完成签到,获得积分10
14秒前
科研通AI2S应助najibveto采纳,获得30
14秒前
邱海华完成签到,获得积分10
16秒前
俊秀的香氛完成签到,获得积分10
16秒前
16秒前
天天快乐应助Along采纳,获得10
19秒前
科研通AI2S应助Elian采纳,获得10
19秒前
20秒前
拐角有毒完成签到 ,获得积分10
20秒前
科研通AI2S应助shox采纳,获得10
21秒前
周小浪完成签到,获得积分10
21秒前
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313182
求助须知:如何正确求助?哪些是违规求助? 2945559
关于积分的说明 8525969
捐赠科研通 2621352
什么是DOI,文献DOI怎么找? 1433465
科研通“疑难数据库(出版商)”最低求助积分说明 665025
邀请新用户注册赠送积分活动 650512