Hydrophobicity Classification of Composite Insulators Based on Light‐Weight Convolutional Neural Networks

卷积神经网络 复合数 计算机科学 人工智能 人工神经网络 模式识别(心理学) 材料科学 机器学习 复合材料
作者
Zhibin Qiu,Zhou Liu,Caibo Liao,Dong Wang,Xiaobin Yu
出处
期刊:Ieej Transactions on Electrical and Electronic Engineering [Wiley]
标识
DOI:10.1002/tee.23683
摘要

To achieve accurate and rapid measurement of the hydrophobicity class (HC) of composite insulators, an intelligent spray image recognition technique based on light-weight convolutional neural networks (CNN) is proposed in this paper. A spray image data set contains clean, contaminated and aged insulators with various illuminations, shooting angles and distances, about 10 400 images of shed surface were collected by spray tests and data augmentation. Five classification models were established by different CNNs, including GoogLeNet, ResNet101, ShuffleNet 0.5×, ShuffleNet 0.25× and MobileNet V2, while the first four of them were pre-trained by ImageNet dataset. These models were trained, validated and tested by spray image data set. Six indexes were designed to evaluate each model and the discriminative regions for classification were visualized by gradient weighted class activation mapping (Grad-CAM) method. The results show that these models can effectively recognize spray images with HC1–HC7 and the light-weight ShuffleNet 0.5× has the best performance, with the classification accuracy of 97.09% for 2022 test images. The Grad-CAM visualizations indicate that the results have high reliability. This study can provide reference for on-line detection and intelligent identification of hydrophobicity levels of composite insulators. © 2022 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
Songzhu完成签到,获得积分10
3秒前
4秒前
852应助碧蓝的寄翠采纳,获得10
5秒前
5秒前
JamesPei应助chen采纳,获得10
5秒前
6秒前
上官若男应助故笺采纳,获得10
6秒前
所所应助开朗若之采纳,获得30
7秒前
aaaaaa完成签到,获得积分10
7秒前
lin发布了新的文献求助10
7秒前
Akim应助pandaccc采纳,获得10
8秒前
8秒前
OO发布了新的文献求助10
8秒前
9秒前
rushui01发布了新的文献求助10
9秒前
渡花应助时间有泪1212采纳,获得10
10秒前
11秒前
单词量发布了新的文献求助50
11秒前
852应助vertl采纳,获得10
11秒前
12秒前
12秒前
zhuling发布了新的文献求助10
12秒前
李健的小迷弟应助Siriya采纳,获得10
12秒前
海派甜心完成签到,获得积分10
13秒前
杨宗智发布了新的文献求助10
14秒前
王耳朵完成签到,获得积分10
14秒前
14秒前
14秒前
张菁完成签到,获得积分10
15秒前
dai发布了新的文献求助10
17秒前
优雅夕阳发布了新的文献求助30
17秒前
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633094
求助须知:如何正确求助?哪些是违规求助? 4728561
关于积分的说明 14985128
捐赠科研通 4791070
什么是DOI,文献DOI怎么找? 2558755
邀请新用户注册赠送积分活动 1519164
关于科研通互助平台的介绍 1479502