Hydrophobicity Classification of Composite Insulators Based on Light‐Weight Convolutional Neural Networks

卷积神经网络 复合数 计算机科学 人工智能 人工神经网络 模式识别(心理学) 材料科学 机器学习 复合材料
作者
Zhibin Qiu,Zhou Liu,Caibo Liao,Dong Wang,Xiaobin Yu
出处
期刊:Ieej Transactions on Electrical and Electronic Engineering [Wiley]
标识
DOI:10.1002/tee.23683
摘要

To achieve accurate and rapid measurement of the hydrophobicity class (HC) of composite insulators, an intelligent spray image recognition technique based on light-weight convolutional neural networks (CNN) is proposed in this paper. A spray image data set contains clean, contaminated and aged insulators with various illuminations, shooting angles and distances, about 10 400 images of shed surface were collected by spray tests and data augmentation. Five classification models were established by different CNNs, including GoogLeNet, ResNet101, ShuffleNet 0.5×, ShuffleNet 0.25× and MobileNet V2, while the first four of them were pre-trained by ImageNet dataset. These models were trained, validated and tested by spray image data set. Six indexes were designed to evaluate each model and the discriminative regions for classification were visualized by gradient weighted class activation mapping (Grad-CAM) method. The results show that these models can effectively recognize spray images with HC1–HC7 and the light-weight ShuffleNet 0.5× has the best performance, with the classification accuracy of 97.09% for 2022 test images. The Grad-CAM visualizations indicate that the results have high reliability. This study can provide reference for on-line detection and intelligent identification of hydrophobicity levels of composite insulators. © 2022 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
材小料发布了新的文献求助10
2秒前
ChenXY完成签到,获得积分10
2秒前
halo发布了新的文献求助10
3秒前
lst完成签到,获得积分10
4秒前
科研通AI2S应助kangk采纳,获得10
5秒前
浮游应助空明流毓采纳,获得10
7秒前
8秒前
YUESIYA发布了新的文献求助30
9秒前
寒冷的奇异果完成签到,获得积分10
9秒前
spc68应助早安采纳,获得10
13秒前
复成完成签到 ,获得积分10
15秒前
光亮妙之完成签到,获得积分10
15秒前
dd发布了新的文献求助30
15秒前
整齐半青完成签到 ,获得积分10
15秒前
你好完成签到,获得积分10
16秒前
chenanqi完成签到,获得积分10
16秒前
17秒前
yfn完成签到,获得积分10
21秒前
22秒前
26秒前
halo完成签到,获得积分10
27秒前
抑郁小鼠解剖家完成签到,获得积分10
27秒前
忧心的不言完成签到,获得积分10
29秒前
5_羟色胺完成签到,获得积分10
31秒前
12135发布了新的文献求助30
31秒前
wanci应助科研通管家采纳,获得10
34秒前
小蘑菇应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
科研通AI6应助科研通管家采纳,获得80
34秒前
华仔应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得30
34秒前
爱喝酸奶完成签到 ,获得积分10
34秒前
njgi发布了新的文献求助10
35秒前
材小料完成签到,获得积分10
36秒前
FashionBoy应助重要谷雪采纳,获得10
37秒前
爱偷懒的猪完成签到,获得积分10
38秒前
怂宝儿完成签到,获得积分10
39秒前
40秒前
42秒前
水澈天澜发布了新的文献求助20
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563713
求助须知:如何正确求助?哪些是违规求助? 4648650
关于积分的说明 14685821
捐赠科研通 4590597
什么是DOI,文献DOI怎么找? 2518657
邀请新用户注册赠送积分活动 1491243
关于科研通互助平台的介绍 1462521