Hydrophobicity Classification of Composite Insulators Based on Light‐Weight Convolutional Neural Networks

卷积神经网络 复合数 计算机科学 人工智能 人工神经网络 模式识别(心理学) 材料科学 机器学习 复合材料
作者
Zhibin Qiu,Zhou Liu,Caibo Liao,Dong Wang,Xiaobin Yu
出处
期刊:Ieej Transactions on Electrical and Electronic Engineering [Wiley]
标识
DOI:10.1002/tee.23683
摘要

To achieve accurate and rapid measurement of the hydrophobicity class (HC) of composite insulators, an intelligent spray image recognition technique based on light-weight convolutional neural networks (CNN) is proposed in this paper. A spray image data set contains clean, contaminated and aged insulators with various illuminations, shooting angles and distances, about 10 400 images of shed surface were collected by spray tests and data augmentation. Five classification models were established by different CNNs, including GoogLeNet, ResNet101, ShuffleNet 0.5×, ShuffleNet 0.25× and MobileNet V2, while the first four of them were pre-trained by ImageNet dataset. These models were trained, validated and tested by spray image data set. Six indexes were designed to evaluate each model and the discriminative regions for classification were visualized by gradient weighted class activation mapping (Grad-CAM) method. The results show that these models can effectively recognize spray images with HC1–HC7 and the light-weight ShuffleNet 0.5× has the best performance, with the classification accuracy of 97.09% for 2022 test images. The Grad-CAM visualizations indicate that the results have high reliability. This study can provide reference for on-line detection and intelligent identification of hydrophobicity levels of composite insulators. © 2022 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
豌豆射手完成签到,获得积分10
1秒前
1秒前
桑桑发布了新的文献求助10
1秒前
领导范儿应助幸福胡萝卜采纳,获得10
2秒前
明理的小甜瓜完成签到,获得积分10
3秒前
3秒前
33333完成签到,获得积分20
3秒前
3秒前
3秒前
756发布了新的文献求助10
3秒前
4秒前
科研通AI5应助GHOST采纳,获得10
4秒前
4秒前
罗实完成签到,获得积分10
5秒前
科研通AI2S应助k7采纳,获得10
5秒前
5秒前
粱自中完成签到,获得积分10
5秒前
luca发布了新的文献求助30
5秒前
5秒前
6秒前
唉呦嘿完成签到,获得积分10
6秒前
dan1029发布了新的文献求助10
7秒前
mc完成签到,获得积分10
7秒前
8秒前
zhaoyue完成签到,获得积分20
8秒前
科研通AI2S应助neil采纳,获得10
9秒前
宇宙无敌完成签到 ,获得积分10
10秒前
SY发布了新的文献求助10
10秒前
Lucas应助小田采纳,获得10
10秒前
叶飞荷发布了新的文献求助10
11秒前
11秒前
11秒前
无悔呀发布了新的文献求助10
11秒前
Ll发布了新的文献求助10
11秒前
纯真抽屉发布了新的文献求助10
11秒前
晖晖shining完成签到,获得积分10
12秒前
小钻风完成签到,获得积分20
12秒前
13秒前
明月照我程完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762