Time-dependent reliability analysis of structural systems based on parallel active learning Kriging model

计算机科学 克里金 可靠性(半导体) 功能(生物学) 失效模式及影响分析 样品(材料) 算法 机器学习 可靠性工程 功率(物理) 化学 物理 色谱法 量子力学 进化生物学 工程类 生物
作者
Hongyou Zhan,Hui Liu,Ning‐Cong Xiao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:247: 123252-123252 被引量:17
标识
DOI:10.1016/j.eswa.2024.123252
摘要

Time-dependent reliability analysis quantifies the failures of structural systems due to time-dependent uncertainties, such as material degradation and dynamic loads. The active learning Kriging model methods are widely used in structural reliability analysis to replace extensive time-consuming finite element simulations. However, they can only update one training sample and one failure mode per iteration, which limits their application to time-dependent, parallel computing, and multiple failure modes problems. In this study, we propose a new parallel active learning Kriging model for time-dependent reliability analysis, which can update multiple training samples and multiple failure modes per iteration. It includes the following strategies: (1) a novel parallel learning function is proposed, which combines the correlation function and U learning function to allow for the selection of multiple training samples per iteration; (2) an adaptive adjustment strategy for the number of parallel samples is proposed, which takes into account the prediction probability of parallel samples; (3) the proposed parallel learning function is integrated into time-dependent reliability analysis with multiple failure modes, enabling simultaneous updates of multiple training samples and failure modes, thus greatly reducing the number of iterations and computational time; and (4) a new stopping criterion is proposed to improve the efficiency of the estimation of failure probability. The proposed method can be applied to series or parallel time-dependent structural systems with multiple failure modes. We demonstrate the effectiveness of the proposed method through three examples, and the proposed method can achieve a balance between the computational time and function calls while maintaining a high level of accuracy in the estimation of time-dependent failure probability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
苗条馒头完成签到,获得积分10
1秒前
爱听歌盼海完成签到 ,获得积分10
1秒前
micaixing2006完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
文静鸡翅完成签到 ,获得积分10
3秒前
3秒前
jiangjiang完成签到,获得积分10
4秒前
keyanyan完成签到,获得积分10
5秒前
6秒前
6秒前
Akim应助科研通管家采纳,获得10
6秒前
6秒前
lemon应助科研通管家采纳,获得10
6秒前
淡然的莫茗完成签到 ,获得积分10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
HDJ应助科研通管家采纳,获得10
6秒前
niNe3YUE应助科研通管家采纳,获得10
6秒前
南风喜欢完成签到,获得积分10
6秒前
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
6秒前
BowieHuang应助zhang采纳,获得10
7秒前
7秒前
cui完成签到,获得积分10
8秒前
shallow完成签到,获得积分10
9秒前
骑着蚂蚁追大象完成签到,获得积分10
10秒前
归海一刀完成签到,获得积分20
11秒前
小杨完成签到,获得积分10
12秒前
karL完成签到,获得积分10
12秒前
Dryad完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
thinking完成签到,获得积分10
14秒前
吉吉国王完成签到,获得积分10
15秒前
王冰完成签到,获得积分10
16秒前
风笛完成签到,获得积分10
16秒前
林韦完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773550
求助须知:如何正确求助?哪些是违规求助? 5612386
关于积分的说明 15431598
捐赠科研通 4906002
什么是DOI,文献DOI怎么找? 2640012
邀请新用户注册赠送积分活动 1587860
关于科研通互助平台的介绍 1542922