Time-dependent reliability analysis of structural systems based on parallel active learning Kriging model

计算机科学 克里金 可靠性(半导体) 功能(生物学) 失效模式及影响分析 样品(材料) 算法 机器学习 可靠性工程 功率(物理) 化学 物理 色谱法 量子力学 进化生物学 工程类 生物
作者
Hongyou Zhan,Hui Liu,Ning‐Cong Xiao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:247: 123252-123252 被引量:17
标识
DOI:10.1016/j.eswa.2024.123252
摘要

Time-dependent reliability analysis quantifies the failures of structural systems due to time-dependent uncertainties, such as material degradation and dynamic loads. The active learning Kriging model methods are widely used in structural reliability analysis to replace extensive time-consuming finite element simulations. However, they can only update one training sample and one failure mode per iteration, which limits their application to time-dependent, parallel computing, and multiple failure modes problems. In this study, we propose a new parallel active learning Kriging model for time-dependent reliability analysis, which can update multiple training samples and multiple failure modes per iteration. It includes the following strategies: (1) a novel parallel learning function is proposed, which combines the correlation function and U learning function to allow for the selection of multiple training samples per iteration; (2) an adaptive adjustment strategy for the number of parallel samples is proposed, which takes into account the prediction probability of parallel samples; (3) the proposed parallel learning function is integrated into time-dependent reliability analysis with multiple failure modes, enabling simultaneous updates of multiple training samples and failure modes, thus greatly reducing the number of iterations and computational time; and (4) a new stopping criterion is proposed to improve the efficiency of the estimation of failure probability. The proposed method can be applied to series or parallel time-dependent structural systems with multiple failure modes. We demonstrate the effectiveness of the proposed method through three examples, and the proposed method can achieve a balance between the computational time and function calls while maintaining a high level of accuracy in the estimation of time-dependent failure probability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
歪比巴卜完成签到,获得积分10
刚刚
可靠的千凝完成签到 ,获得积分10
3秒前
7秒前
张璋完成签到,获得积分10
8秒前
orixero应助邹泰然采纳,获得10
11秒前
12秒前
LATP发布了新的文献求助10
13秒前
15秒前
17秒前
17秒前
沈清酌应助科研通管家采纳,获得10
17秒前
17秒前
脑洞疼应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
吴wuwu发布了新的文献求助10
19秒前
闪闪的枫关注了科研通微信公众号
22秒前
26秒前
provin完成签到,获得积分10
26秒前
yueang发布了新的文献求助10
26秒前
27秒前
27秒前
聪慧芷巧完成签到,获得积分10
28秒前
28秒前
攀攀完成签到,获得积分10
30秒前
邹泰然发布了新的文献求助10
30秒前
风清扬发布了新的文献求助10
32秒前
whichwhy完成签到,获得积分20
32秒前
Owen_Hu_11完成签到,获得积分10
33秒前
天天快乐应助晨子采纳,获得10
33秒前
keikei发布了新的文献求助10
33秒前
Owen_Hu_11发布了新的文献求助10
36秒前
40秒前
41秒前
柚子完成签到,获得积分10
44秒前
Popo完成签到,获得积分10
44秒前
45秒前
Shengee完成签到,获得积分10
45秒前
46秒前
shelemi发布了新的文献求助10
46秒前
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5877764
求助须知:如何正确求助?哪些是违规求助? 6545523
关于积分的说明 15682183
捐赠科研通 4996442
什么是DOI,文献DOI怎么找? 2692710
邀请新用户注册赠送积分活动 1634734
关于科研通互助平台的介绍 1592400