Time-dependent reliability analysis of structural systems based on parallel active learning Kriging model

计算机科学 克里金 可靠性(半导体) 功能(生物学) 失效模式及影响分析 样品(材料) 算法 机器学习 可靠性工程 功率(物理) 化学 物理 色谱法 量子力学 进化生物学 工程类 生物
作者
Hongyou Zhan,Hui Liu,Ning‐Cong Xiao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:247: 123252-123252 被引量:4
标识
DOI:10.1016/j.eswa.2024.123252
摘要

Time-dependent reliability analysis quantifies the failures of structural systems due to time-dependent uncertainties, such as material degradation and dynamic loads. The active learning Kriging model methods are widely used in structural reliability analysis to replace extensive time-consuming finite element simulations. However, they can only update one training sample and one failure mode per iteration, which limits their application to time-dependent, parallel computing, and multiple failure modes problems. In this study, we propose a new parallel active learning Kriging model for time-dependent reliability analysis, which can update multiple training samples and multiple failure modes per iteration. It includes the following strategies: (1) a novel parallel learning function is proposed, which combines the correlation function and U learning function to allow for the selection of multiple training samples per iteration; (2) an adaptive adjustment strategy for the number of parallel samples is proposed, which takes into account the prediction probability of parallel samples; (3) the proposed parallel learning function is integrated into time-dependent reliability analysis with multiple failure modes, enabling simultaneous updates of multiple training samples and failure modes, thus greatly reducing the number of iterations and computational time; and (4) a new stopping criterion is proposed to improve the efficiency of the estimation of failure probability. The proposed method can be applied to series or parallel time-dependent structural systems with multiple failure modes. We demonstrate the effectiveness of the proposed method through three examples, and the proposed method can achieve a balance between the computational time and function calls while maintaining a high level of accuracy in the estimation of time-dependent failure probability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内向凌兰发布了新的文献求助10
刚刚
伍秋望完成签到,获得积分10
刚刚
1秒前
2秒前
跳跃发布了新的文献求助10
3秒前
持卿应助宗磬采纳,获得20
3秒前
3秒前
花生油炒花生米完成签到 ,获得积分10
3秒前
Riki完成签到,获得积分10
5秒前
虚幻白玉发布了新的文献求助10
5秒前
德行天下完成签到,获得积分10
5秒前
Jenny应助lan采纳,获得10
6秒前
fztnh完成签到,获得积分10
6秒前
上官若男应助lyz666采纳,获得10
6秒前
顾念完成签到 ,获得积分10
6秒前
277发布了新的文献求助10
7秒前
小二郎应助GCD采纳,获得10
8秒前
hhhhhh完成签到 ,获得积分10
8秒前
甜味拾荒者完成签到,获得积分10
10秒前
小二郎应助BONBON采纳,获得10
10秒前
11秒前
charllie完成签到 ,获得积分10
11秒前
空禅yew完成签到,获得积分10
12秒前
坚强亦丝应助跳跃采纳,获得10
14秒前
英俊的铭应助cc采纳,获得10
14秒前
huangsan完成签到,获得积分10
14秒前
匹诺曹完成签到,获得积分10
14秒前
15秒前
华仔应助进取拼搏采纳,获得10
15秒前
16秒前
dingdong发布了新的文献求助10
16秒前
you完成签到 ,获得积分10
17秒前
qwf完成签到 ,获得积分10
17秒前
18秒前
万能图书馆应助一一采纳,获得10
18秒前
执着跳跳糖完成签到 ,获得积分10
19秒前
阳yang完成签到,获得积分10
19秒前
牛头人完成签到,获得积分10
19秒前
20秒前
Rrr发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808