Time-dependent reliability analysis of structural systems based on parallel active learning Kriging model

计算机科学 克里金 可靠性(半导体) 功能(生物学) 失效模式及影响分析 样品(材料) 算法 机器学习 可靠性工程 功率(物理) 化学 物理 色谱法 量子力学 进化生物学 工程类 生物
作者
Hongyou Zhan,Hui Liu,Ning‐Cong Xiao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:247: 123252-123252 被引量:17
标识
DOI:10.1016/j.eswa.2024.123252
摘要

Time-dependent reliability analysis quantifies the failures of structural systems due to time-dependent uncertainties, such as material degradation and dynamic loads. The active learning Kriging model methods are widely used in structural reliability analysis to replace extensive time-consuming finite element simulations. However, they can only update one training sample and one failure mode per iteration, which limits their application to time-dependent, parallel computing, and multiple failure modes problems. In this study, we propose a new parallel active learning Kriging model for time-dependent reliability analysis, which can update multiple training samples and multiple failure modes per iteration. It includes the following strategies: (1) a novel parallel learning function is proposed, which combines the correlation function and U learning function to allow for the selection of multiple training samples per iteration; (2) an adaptive adjustment strategy for the number of parallel samples is proposed, which takes into account the prediction probability of parallel samples; (3) the proposed parallel learning function is integrated into time-dependent reliability analysis with multiple failure modes, enabling simultaneous updates of multiple training samples and failure modes, thus greatly reducing the number of iterations and computational time; and (4) a new stopping criterion is proposed to improve the efficiency of the estimation of failure probability. The proposed method can be applied to series or parallel time-dependent structural systems with multiple failure modes. We demonstrate the effectiveness of the proposed method through three examples, and the proposed method can achieve a balance between the computational time and function calls while maintaining a high level of accuracy in the estimation of time-dependent failure probability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZICU完成签到,获得积分10
刚刚
梅子黄时雨完成签到,获得积分10
刚刚
刚刚
毛妹完成签到,获得积分10
刚刚
吴灵完成签到,获得积分10
刚刚
飞鸿影下完成签到 ,获得积分10
1秒前
ding应助白水采纳,获得10
1秒前
Yvan完成签到,获得积分10
1秒前
2秒前
喵喵完成签到 ,获得积分10
2秒前
云草发布了新的文献求助10
2秒前
yanchen完成签到,获得积分10
4秒前
guozizi发布了新的文献求助30
4秒前
在水一方应助火羊宝采纳,获得10
4秒前
Fayth发布了新的文献求助10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
一期一会完成签到,获得积分10
5秒前
思源应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Hello应助科研通管家采纳,获得10
5秒前
newma完成签到,获得积分10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
6秒前
奇犽请爱我完成签到,获得积分10
6秒前
李健应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
思源应助科研通管家采纳,获得10
6秒前
6秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388268
求助须知:如何正确求助?哪些是违规求助? 4510318
关于积分的说明 14034886
捐赠科研通 4421132
什么是DOI,文献DOI怎么找? 2428650
邀请新用户注册赠送积分活动 1421284
关于科研通互助平台的介绍 1400517