Time-dependent reliability analysis of structural systems based on parallel active learning Kriging model

计算机科学 克里金 可靠性(半导体) 功能(生物学) 失效模式及影响分析 样品(材料) 算法 机器学习 可靠性工程 功率(物理) 化学 物理 色谱法 量子力学 进化生物学 工程类 生物
作者
Hongyou Zhan,Hui Liu,Ning‐Cong Xiao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:247: 123252-123252 被引量:4
标识
DOI:10.1016/j.eswa.2024.123252
摘要

Time-dependent reliability analysis quantifies the failures of structural systems due to time-dependent uncertainties, such as material degradation and dynamic loads. The active learning Kriging model methods are widely used in structural reliability analysis to replace extensive time-consuming finite element simulations. However, they can only update one training sample and one failure mode per iteration, which limits their application to time-dependent, parallel computing, and multiple failure modes problems. In this study, we propose a new parallel active learning Kriging model for time-dependent reliability analysis, which can update multiple training samples and multiple failure modes per iteration. It includes the following strategies: (1) a novel parallel learning function is proposed, which combines the correlation function and U learning function to allow for the selection of multiple training samples per iteration; (2) an adaptive adjustment strategy for the number of parallel samples is proposed, which takes into account the prediction probability of parallel samples; (3) the proposed parallel learning function is integrated into time-dependent reliability analysis with multiple failure modes, enabling simultaneous updates of multiple training samples and failure modes, thus greatly reducing the number of iterations and computational time; and (4) a new stopping criterion is proposed to improve the efficiency of the estimation of failure probability. The proposed method can be applied to series or parallel time-dependent structural systems with multiple failure modes. We demonstrate the effectiveness of the proposed method through three examples, and the proposed method can achieve a balance between the computational time and function calls while maintaining a high level of accuracy in the estimation of time-dependent failure probability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Blummer完成签到,获得积分10
1秒前
风清扬应助苏沐秋秋采纳,获得10
1秒前
聪慧的书包完成签到,获得积分10
2秒前
vivre223完成签到,获得积分10
2秒前
AKYDXS完成签到,获得积分10
2秒前
酷酷紫夏完成签到,获得积分10
3秒前
yingtiao完成签到,获得积分10
3秒前
xiongqi完成签到 ,获得积分10
4秒前
66668888发布了新的文献求助10
4秒前
单纯芹菜完成签到,获得积分10
4秒前
浮游应助JOY采纳,获得10
4秒前
5秒前
5秒前
6秒前
鳗鱼静珊完成签到 ,获得积分20
6秒前
怪了个奇发布了新的文献求助30
6秒前
6秒前
jzmupyj发布了新的文献求助10
6秒前
haha哈哈哈发布了新的文献求助10
6秒前
简单澜发布了新的文献求助10
6秒前
鹿璟璟完成签到,获得积分10
6秒前
个高视野远完成签到,获得积分10
7秒前
聪明的小海豚完成签到,获得积分10
7秒前
FY完成签到,获得积分10
7秒前
酥脆多汁的大油条完成签到,获得积分10
8秒前
9秒前
不安海蓝完成签到,获得积分10
9秒前
9秒前
rkay完成签到,获得积分10
9秒前
羊布吃稻发布了新的文献求助30
10秒前
慕月完成签到 ,获得积分10
10秒前
11秒前
11秒前
卷卷发布了新的文献求助10
11秒前
11秒前
劉浏琉完成签到,获得积分10
11秒前
简柠完成签到,获得积分10
11秒前
lessismore发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911338
求助须知:如何正确求助?哪些是违规求助? 4186859
关于积分的说明 13001611
捐赠科研通 3954670
什么是DOI,文献DOI怎么找? 2168382
邀请新用户注册赠送积分活动 1186856
关于科研通互助平台的介绍 1094206