Time-dependent reliability analysis of structural systems based on parallel active learning Kriging model

计算机科学 克里金 可靠性(半导体) 功能(生物学) 失效模式及影响分析 样品(材料) 算法 机器学习 可靠性工程 功率(物理) 化学 物理 色谱法 量子力学 进化生物学 工程类 生物
作者
Hongyou Zhan,Hui Liu,Ning‐Cong Xiao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:247: 123252-123252 被引量:17
标识
DOI:10.1016/j.eswa.2024.123252
摘要

Time-dependent reliability analysis quantifies the failures of structural systems due to time-dependent uncertainties, such as material degradation and dynamic loads. The active learning Kriging model methods are widely used in structural reliability analysis to replace extensive time-consuming finite element simulations. However, they can only update one training sample and one failure mode per iteration, which limits their application to time-dependent, parallel computing, and multiple failure modes problems. In this study, we propose a new parallel active learning Kriging model for time-dependent reliability analysis, which can update multiple training samples and multiple failure modes per iteration. It includes the following strategies: (1) a novel parallel learning function is proposed, which combines the correlation function and U learning function to allow for the selection of multiple training samples per iteration; (2) an adaptive adjustment strategy for the number of parallel samples is proposed, which takes into account the prediction probability of parallel samples; (3) the proposed parallel learning function is integrated into time-dependent reliability analysis with multiple failure modes, enabling simultaneous updates of multiple training samples and failure modes, thus greatly reducing the number of iterations and computational time; and (4) a new stopping criterion is proposed to improve the efficiency of the estimation of failure probability. The proposed method can be applied to series or parallel time-dependent structural systems with multiple failure modes. We demonstrate the effectiveness of the proposed method through three examples, and the proposed method can achieve a balance between the computational time and function calls while maintaining a high level of accuracy in the estimation of time-dependent failure probability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xyx发布了新的文献求助10
刚刚
代杰居然完成签到 ,获得积分10
刚刚
猫尔儿完成签到,获得积分10
刚刚
1秒前
DR_HUI关注了科研通微信公众号
1秒前
魅力小白菜完成签到 ,获得积分20
2秒前
3秒前
sss完成签到 ,获得积分10
3秒前
4秒前
Lucas应助任哥哥采纳,获得10
4秒前
完美世界应助菜鸟采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
Rosin发布了新的文献求助10
6秒前
小马甲应助榴莲采纳,获得10
6秒前
cecilia发布了新的文献求助10
7秒前
半圆亻发布了新的文献求助10
7秒前
英俊的铭应助xyx采纳,获得10
8秒前
8秒前
Beclin1完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
Pupil完成签到,获得积分10
9秒前
龙溪完成签到,获得积分10
9秒前
积极的迎梦完成签到 ,获得积分10
10秒前
ccm应助sy采纳,获得10
11秒前
12秒前
12秒前
13秒前
自信谷冬完成签到,获得积分10
13秒前
解语花031发布了新的文献求助10
13秒前
丹妮完成签到,获得积分10
14秒前
聂xx完成签到,获得积分20
14秒前
菜鸟完成签到,获得积分10
14秒前
思源应助小燚采纳,获得10
14秒前
小豆芽博士完成签到,获得积分10
14秒前
子怡发布了新的文献求助10
15秒前
15秒前
黄梦娇完成签到,获得积分10
16秒前
永吉完成签到,获得积分10
17秒前
mumumuzzz完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684323
求助须知:如何正确求助?哪些是违规求助? 5035995
关于积分的说明 15183907
捐赠科研通 4843598
什么是DOI,文献DOI怎么找? 2596736
邀请新用户注册赠送积分活动 1549447
关于科研通互助平台的介绍 1507972