清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Time-dependent reliability analysis of structural systems based on parallel active learning Kriging model

计算机科学 克里金 可靠性(半导体) 功能(生物学) 失效模式及影响分析 样品(材料) 算法 机器学习 可靠性工程 色谱法 量子力学 进化生物学 生物 物理 工程类 功率(物理) 化学
作者
Hongyou Zhan,Hui Liu,Ning‐Cong Xiao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:247: 123252-123252 被引量:4
标识
DOI:10.1016/j.eswa.2024.123252
摘要

Time-dependent reliability analysis quantifies the failures of structural systems due to time-dependent uncertainties, such as material degradation and dynamic loads. The active learning Kriging model methods are widely used in structural reliability analysis to replace extensive time-consuming finite element simulations. However, they can only update one training sample and one failure mode per iteration, which limits their application to time-dependent, parallel computing, and multiple failure modes problems. In this study, we propose a new parallel active learning Kriging model for time-dependent reliability analysis, which can update multiple training samples and multiple failure modes per iteration. It includes the following strategies: (1) a novel parallel learning function is proposed, which combines the correlation function and U learning function to allow for the selection of multiple training samples per iteration; (2) an adaptive adjustment strategy for the number of parallel samples is proposed, which takes into account the prediction probability of parallel samples; (3) the proposed parallel learning function is integrated into time-dependent reliability analysis with multiple failure modes, enabling simultaneous updates of multiple training samples and failure modes, thus greatly reducing the number of iterations and computational time; and (4) a new stopping criterion is proposed to improve the efficiency of the estimation of failure probability. The proposed method can be applied to series or parallel time-dependent structural systems with multiple failure modes. We demonstrate the effectiveness of the proposed method through three examples, and the proposed method can achieve a balance between the computational time and function calls while maintaining a high level of accuracy in the estimation of time-dependent failure probability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助帮帮我好吗采纳,获得10
5秒前
科目三应助zhouleiwang采纳,获得10
6秒前
丘比特应助帮帮我好吗采纳,获得10
21秒前
57秒前
快乐小狗发布了新的文献求助10
1分钟前
1分钟前
Meredith完成签到,获得积分10
1分钟前
乐乐应助快乐小狗采纳,获得30
1分钟前
1分钟前
2分钟前
2分钟前
呼风唤雨发布了新的文献求助10
2分钟前
繁馥然发布了新的文献求助20
2分钟前
呼风唤雨完成签到,获得积分10
2分钟前
marska完成签到,获得积分10
2分钟前
繁馥然完成签到,获得积分10
2分钟前
3分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
3分钟前
3分钟前
章铭-111发布了新的文献求助10
3分钟前
章铭-111完成签到,获得积分10
4分钟前
4分钟前
白华苍松发布了新的文献求助10
4分钟前
4分钟前
葛力发布了新的文献求助10
4分钟前
Eric800824完成签到 ,获得积分10
4分钟前
poegtam完成签到,获得积分10
5分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
5分钟前
严珍珍完成签到 ,获得积分10
5分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
5分钟前
6分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
6分钟前
苦逼的医学生陳完成签到 ,获得积分10
6分钟前
6分钟前
鳗鱼起眸发布了新的文献求助10
6分钟前
6分钟前
JamesPei应助鳗鱼起眸采纳,获得10
7分钟前
刘刘完成签到 ,获得积分10
7分钟前
7分钟前
阎听筠完成签到 ,获得积分10
7分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137021
求助须知:如何正确求助?哪些是违规求助? 2787992
关于积分的说明 7784214
捐赠科研通 2444073
什么是DOI,文献DOI怎么找? 1299719
科研通“疑难数据库(出版商)”最低求助积分说明 625513
版权声明 600997