Sub-region based radiomics analysis for prediction of isocitrate dehydrogenase and telomerase reverse transcriptase promoter mutations in diffuse gliomas

异柠檬酸脱氢酶 医学 IDH1 端粒酶逆转录酶 胶质瘤 无线电技术 逆转录酶 胶质母细胞瘤 端粒酶 癌症研究 分子生物学 突变 聚合酶链反应 遗传学 基因 生物 生物化学 放射科
作者
Haoyuan Zhang,Yu Ouyang,Han Zhang,Ying Zhang,Rujuan Su,Bin Zhou,Wenqiang Yang,Yu Lei,Biao Huang
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:79 (5): e682-e691 被引量:2
标识
DOI:10.1016/j.crad.2024.01.030
摘要

AIM To enhance the prediction of mutation status of isocitrate dehydrogenase (IDH) and telomerase reverse transcriptase (TERT) promoter, which are crucial for glioma prognostication and therapeutic decision-making, via sub-regional radiomics analysis based on multiparametric magnetic resonance imaging (MRI). MATERIALS AND METHODS A retrospective study was conducted on 401 participants with adult-type diffuse gliomas. Employing the K-means algorithm, tumours were clustered into two to four subregions. Sub-regional radiomics features were extracted and selected using the Mann–Whitney U-test, Pearson correlation analysis, and least absolute shrinkage and selection operator, forming the basis for predictive models. The performance of model combinations of different sub-regional features and classifiers (including logistic regression, support vector machines, K-nearest neighbour, light gradient boosting machine, and multilayer perceptron) was evaluated using an external test set. RESULTS The models demonstrated high predictive performance, with area under the receiver operating characteristic curve (AUC) values ranging from 0.918 to 0.994 in the training set for IDH mutation prediction and from 0.758 to 0.939 for TERT promoter mutation prediction. In the external test sets, the two-cluster radiomics features and the logistic regression (LR) model yielded the highest prediction for IDH mutation, resulting in an AUC of 0.905. Additionally, the most effective predictive performance with an AUC of 0.803 was achieved using the four-cluster radiomics features and the support vector machine (SVM) model, specifically for TERT promoter mutation prediction. CONCLUSION The present study underscores the potential of sub-regional radiomics analysis in predicting IDH and TERT promoter mutations in glioma patients. These models have the capacity to refine preoperative glioma diagnosis and contribute to personalised therapeutic interventions for patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daisy发布了新的文献求助10
2秒前
极光完成签到,获得积分10
2秒前
2秒前
qifeng完成签到,获得积分10
4秒前
吾将上下而求索应助lJH采纳,获得10
4秒前
萧凌雪完成签到,获得积分10
6秒前
小鱼儿发布了新的文献求助10
6秒前
7秒前
7秒前
zzzyyyppp完成签到,获得积分10
7秒前
LL完成签到,获得积分10
9秒前
9秒前
13秒前
HN_litchi_King完成签到,获得积分10
15秒前
lJH完成签到,获得积分10
15秒前
用户5063899完成签到,获得积分10
16秒前
Eirrr发布了新的文献求助10
16秒前
19秒前
东山发布了新的文献求助10
20秒前
ll完成签到,获得积分10
20秒前
21秒前
无花果应助qst采纳,获得10
24秒前
syhjxk完成签到,获得积分10
24秒前
风中道罡发布了新的文献求助10
25秒前
Eirrr完成签到,获得积分10
26秒前
26秒前
惠归尘发布了新的文献求助10
28秒前
搜集达人应助东山采纳,获得10
29秒前
量子星尘发布了新的文献求助10
29秒前
29秒前
无限的山水完成签到 ,获得积分10
29秒前
29秒前
30秒前
30秒前
江三村完成签到 ,获得积分10
31秒前
舌T发布了新的文献求助10
31秒前
ding应助缓慢冬天采纳,获得10
31秒前
爱吃锅巴肉片完成签到,获得积分10
32秒前
wuliww发布了新的文献求助10
33秒前
Horizon发布了新的文献求助30
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135622
捐赠科研通 3239835
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150