Sub-region based radiomics analysis for prediction of isocitrate dehydrogenase and telomerase reverse transcriptase promoter mutations in diffuse gliomas

异柠檬酸脱氢酶 医学 端粒酶逆转录酶 接收机工作特性 支持向量机 Lasso(编程语言) 逻辑回归 人工智能 端粒酶 机器学习 计算机科学 遗传学 内科学 核磁共振 基因 物理 生物 万维网
作者
Haoyuan Zhang,Yu Ouyang,Han Zhang,Ying Zhang,Ruibin Su,Bin Zhou,Wenqiang Yang,Yu Lei,Biao Huang
出处
期刊:Clinical Radiology [Elsevier]
被引量:1
标识
DOI:10.1016/j.crad.2024.01.030
摘要

AIM To enhance the prediction of mutation status of isocitrate dehydrogenase (IDH) and telomerase reverse transcriptase (TERT) promoter, which are crucial for glioma prognostication and therapeutic decision-making, via sub-regional radiomics analysis based on multiparametric magnetic resonance imaging (MRI). MATERIALS AND METHODS A retrospective study was conducted on 401 participants with adult-type diffuse gliomas. Employing the K-means algorithm, tumours were clustered into two to four subregions. Sub-regional radiomics features were extracted and selected using the Mann–Whitney U-test, Pearson correlation analysis, and least absolute shrinkage and selection operator, forming the basis for predictive models. The performance of model combinations of different sub-regional features and classifiers (including logistic regression, support vector machines, K-nearest neighbour, light gradient boosting machine, and multilayer perceptron) was evaluated using an external test set. RESULTS The models demonstrated high predictive performance, with area under the receiver operating characteristic curve (AUC) values ranging from 0.918 to 0.994 in the training set for IDH mutation prediction and from 0.758 to 0.939 for TERT promoter mutation prediction. In the external test sets, the two-cluster radiomics features and the logistic regression (LR) model yielded the highest prediction for IDH mutation, resulting in an AUC of 0.905. Additionally, the most effective predictive performance with an AUC of 0.803 was achieved using the four-cluster radiomics features and the support vector machine (SVM) model, specifically for TERT promoter mutation prediction. CONCLUSION The present study underscores the potential of sub-regional radiomics analysis in predicting IDH and TERT promoter mutations in glioma patients. These models have the capacity to refine preoperative glioma diagnosis and contribute to personalised therapeutic interventions for patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qd应助热爱科研的小白鼠采纳,获得10
刚刚
1秒前
桐桐应助无限寒云采纳,获得10
1秒前
Jasper应助哒哒哒采纳,获得10
2秒前
kuny发布了新的文献求助10
4秒前
5秒前
5秒前
在水一方应助科研通管家采纳,获得10
7秒前
不配.应助科研通管家采纳,获得20
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
春生发布了新的文献求助10
8秒前
Owen应助萧水白采纳,获得100
9秒前
9秒前
suuri发布了新的文献求助10
10秒前
10秒前
Catalina发布了新的文献求助10
10秒前
11秒前
zzz完成签到,获得积分10
11秒前
ColinWine完成签到,获得积分10
11秒前
互助遵法尚德应助aixue采纳,获得10
12秒前
哒哒哒完成签到,获得积分10
15秒前
16秒前
18秒前
18秒前
19秒前
19秒前
19秒前
阳光he完成签到,获得积分10
20秒前
哒哒哒发布了新的文献求助10
21秒前
Li完成签到,获得积分10
21秒前
顾矜应助风中的月亮采纳,获得10
22秒前
春生完成签到,获得积分10
23秒前
香蕉寒梅发布了新的文献求助10
24秒前
斯文一笑完成签到 ,获得积分10
26秒前
Shuo Yang发布了新的文献求助10
26秒前
左澄澄完成签到 ,获得积分10
27秒前
xx完成签到,获得积分10
29秒前
美好斓发布了新的文献求助10
29秒前
缓慢的觅云完成签到,获得积分10
31秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147962
求助须知:如何正确求助?哪些是违规求助? 2798966
关于积分的说明 7832977
捐赠科研通 2456063
什么是DOI,文献DOI怎么找? 1307113
科研通“疑难数据库(出版商)”最低求助积分说明 628062
版权声明 601620