亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sub-region based radiomics analysis for prediction of isocitrate dehydrogenase and telomerase reverse transcriptase promoter mutations in diffuse gliomas

异柠檬酸脱氢酶 医学 IDH1 端粒酶逆转录酶 胶质瘤 无线电技术 逆转录酶 胶质母细胞瘤 端粒酶 癌症研究 分子生物学 突变 聚合酶链反应 遗传学 基因 生物 生物化学 放射科
作者
Haoyuan Zhang,Yu Ouyang,Han Zhang,Ying Zhang,Rujuan Su,Bin Zhou,Wenqiang Yang,Yu Lei,Biao Huang
出处
期刊:Clinical Radiology [Elsevier]
卷期号:79 (5): e682-e691 被引量:2
标识
DOI:10.1016/j.crad.2024.01.030
摘要

AIM To enhance the prediction of mutation status of isocitrate dehydrogenase (IDH) and telomerase reverse transcriptase (TERT) promoter, which are crucial for glioma prognostication and therapeutic decision-making, via sub-regional radiomics analysis based on multiparametric magnetic resonance imaging (MRI). MATERIALS AND METHODS A retrospective study was conducted on 401 participants with adult-type diffuse gliomas. Employing the K-means algorithm, tumours were clustered into two to four subregions. Sub-regional radiomics features were extracted and selected using the Mann–Whitney U-test, Pearson correlation analysis, and least absolute shrinkage and selection operator, forming the basis for predictive models. The performance of model combinations of different sub-regional features and classifiers (including logistic regression, support vector machines, K-nearest neighbour, light gradient boosting machine, and multilayer perceptron) was evaluated using an external test set. RESULTS The models demonstrated high predictive performance, with area under the receiver operating characteristic curve (AUC) values ranging from 0.918 to 0.994 in the training set for IDH mutation prediction and from 0.758 to 0.939 for TERT promoter mutation prediction. In the external test sets, the two-cluster radiomics features and the logistic regression (LR) model yielded the highest prediction for IDH mutation, resulting in an AUC of 0.905. Additionally, the most effective predictive performance with an AUC of 0.803 was achieved using the four-cluster radiomics features and the support vector machine (SVM) model, specifically for TERT promoter mutation prediction. CONCLUSION The present study underscores the potential of sub-regional radiomics analysis in predicting IDH and TERT promoter mutations in glioma patients. These models have the capacity to refine preoperative glioma diagnosis and contribute to personalised therapeutic interventions for patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
wearelulu完成签到,获得积分10
18秒前
Micheal完成签到 ,获得积分10
23秒前
40秒前
科研通AI6应助科研通管家采纳,获得10
40秒前
momo发布了新的文献求助30
46秒前
57秒前
何何发布了新的文献求助10
1分钟前
可爱的函函应助何何采纳,获得10
1分钟前
momo完成签到,获得积分10
1分钟前
Lan完成签到 ,获得积分10
1分钟前
Wei发布了新的文献求助10
1分钟前
1分钟前
哈哈发布了新的文献求助10
2分钟前
jinsijia应助科研通管家采纳,获得10
2分钟前
哈哈发布了新的文献求助10
2分钟前
计划完成签到,获得积分10
2分钟前
魔幻诗兰完成签到,获得积分10
3分钟前
NexusExplorer应助科研小贩采纳,获得10
3分钟前
3分钟前
科研小贩发布了新的文献求助10
3分钟前
热情依白应助可爱寻芹采纳,获得10
3分钟前
从来都不会放弃zr完成签到,获得积分0
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
王吉萍完成签到 ,获得积分10
4分钟前
gcr完成签到 ,获得积分10
4分钟前
Lucas应助科研通管家采纳,获得10
4分钟前
Emilia发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
千里草完成签到,获得积分10
6分钟前
lezbj99完成签到,获得积分10
6分钟前
6分钟前
搜集达人应助科研通管家采纳,获得10
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
xxi发布了新的文献求助10
6分钟前
钟亦是终完成签到 ,获得积分10
7分钟前
哈哈发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681596
求助须知:如何正确求助?哪些是违规求助? 5010963
关于积分的说明 15175878
捐赠科研通 4841127
什么是DOI,文献DOI怎么找? 2594966
邀请新用户注册赠送积分活动 1547940
关于科研通互助平台的介绍 1505973