Sub-region based radiomics analysis for prediction of isocitrate dehydrogenase and telomerase reverse transcriptase promoter mutations in diffuse gliomas

异柠檬酸脱氢酶 医学 IDH1 端粒酶逆转录酶 胶质瘤 无线电技术 逆转录酶 胶质母细胞瘤 端粒酶 癌症研究 分子生物学 突变 聚合酶链反应 遗传学 基因 生物 生物化学 放射科
作者
Haoyuan Zhang,Yu Ouyang,Han Zhang,Ying Zhang,Rujuan Su,Bin Zhou,Wenqiang Yang,Yu Lei,Biao Huang
出处
期刊:Clinical Radiology [Elsevier]
卷期号:79 (5): e682-e691 被引量:2
标识
DOI:10.1016/j.crad.2024.01.030
摘要

AIM To enhance the prediction of mutation status of isocitrate dehydrogenase (IDH) and telomerase reverse transcriptase (TERT) promoter, which are crucial for glioma prognostication and therapeutic decision-making, via sub-regional radiomics analysis based on multiparametric magnetic resonance imaging (MRI). MATERIALS AND METHODS A retrospective study was conducted on 401 participants with adult-type diffuse gliomas. Employing the K-means algorithm, tumours were clustered into two to four subregions. Sub-regional radiomics features were extracted and selected using the Mann–Whitney U-test, Pearson correlation analysis, and least absolute shrinkage and selection operator, forming the basis for predictive models. The performance of model combinations of different sub-regional features and classifiers (including logistic regression, support vector machines, K-nearest neighbour, light gradient boosting machine, and multilayer perceptron) was evaluated using an external test set. RESULTS The models demonstrated high predictive performance, with area under the receiver operating characteristic curve (AUC) values ranging from 0.918 to 0.994 in the training set for IDH mutation prediction and from 0.758 to 0.939 for TERT promoter mutation prediction. In the external test sets, the two-cluster radiomics features and the logistic regression (LR) model yielded the highest prediction for IDH mutation, resulting in an AUC of 0.905. Additionally, the most effective predictive performance with an AUC of 0.803 was achieved using the four-cluster radiomics features and the support vector machine (SVM) model, specifically for TERT promoter mutation prediction. CONCLUSION The present study underscores the potential of sub-regional radiomics analysis in predicting IDH and TERT promoter mutations in glioma patients. These models have the capacity to refine preoperative glioma diagnosis and contribute to personalised therapeutic interventions for patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dada发布了新的文献求助10
1秒前
1秒前
等待煜城发布了新的文献求助30
1秒前
zy发布了新的文献求助10
2秒前
2秒前
3秒前
FashionBoy应助明亮的泥猴桃采纳,获得10
3秒前
荔枝味果冻完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
研友_Z3NGvn发布了新的文献求助10
6秒前
愉快的烤鸡完成签到,获得积分10
6秒前
科研通AI6.1应助ph0307采纳,获得10
7秒前
Stella应助Shuo Yang采纳,获得30
7秒前
suxiang发布了新的文献求助100
7秒前
默欢发布了新的文献求助10
7秒前
飞飞飞发布了新的文献求助10
8秒前
谢大喵发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
赘婿应助Yc丶小橘采纳,获得10
8秒前
9秒前
9秒前
10秒前
明理的之云完成签到,获得积分10
11秒前
共享精神应助张龙珑采纳,获得10
11秒前
等待煜城完成签到,获得积分10
11秒前
天气发布了新的文献求助10
11秒前
zy发布了新的文献求助10
11秒前
11秒前
Dandanhuang完成签到,获得积分10
12秒前
李健的小迷弟应助YL采纳,获得10
12秒前
盐茶厅人发布了新的文献求助10
12秒前
13秒前
13秒前
给好评发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Processing of reusable surgical textiles for use in health care facilities 500
Population genetics 2nd edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5805399
求助须知:如何正确求助?哪些是违规求助? 5849275
关于积分的说明 15516132
捐赠科研通 4930686
什么是DOI,文献DOI怎么找? 2654705
邀请新用户注册赠送积分活动 1601499
关于科研通互助平台的介绍 1556542