IE-Evo: Internal and External Evolution-Enhanced Temporal Knowledge Graph Forecasting

计算机科学 序列化 图形 水准点(测量) 语义学(计算机科学) 人工智能 理论计算机科学 数据挖掘 大地测量学 程序设计语言 地理 操作系统
作者
Kangzheng Liu,Feng Zhao,Guandong Xu,Shiqing Wu
标识
DOI:10.1109/icdm58522.2023.00050
摘要

Temporal knowledge graph (TKG) forecasting is widely used in various fields due to its ability to infer future events based on historical information. Modeling the internal structures and chronological dependencies of historical subgraph sequences has been proven effective. Nevertheless, on the one hand, the TKG forecasting process generally suffers from a lack of sufficient sample data due to historical resource limitations; thus, most works focus on continuously mining the patterns of historical sequences while ignoring the semantically-rich background information provided by external knowledge, especially when historical query-related information is scarce. On the other hand, when merely serializing the given subgraph sequence to mimic its temporal evolution process, only the chronological dependencies between the subgraphs can be considered, thus ignoring the evolution of time information. Hence, a method that integrates internal and external knowledge to enhance the representations of entities is urgently needed. To this end, we propose a novel TKG forecasting method, namely, the internal and external evolution-enhanced framework (IE-Evo). For the former issue, we design an external evolution encoder and use a pre-trained language model (PLM) to provide powerful external knowledge semantics for TKG forecasting. To address the latter concern, we propose an internal evolution encoder that explicitly embeds the time information while modeling the aggregation and evolution processes of the observed sequential structural information. IE-Evo has been evaluated on four public benchmark datasets, showcasing its significant improvements across multiple evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
诸笑白发布了新的文献求助10
2秒前
丹丹完成签到 ,获得积分10
2秒前
kk完成签到,获得积分10
2秒前
3秒前
caoyy发布了新的文献求助10
3秒前
4秒前
5秒前
斗图不怕输完成签到,获得积分10
7秒前
aikeyan完成签到,获得积分10
8秒前
imaginehdxy发布了新的文献求助10
9秒前
派大星完成签到,获得积分10
9秒前
9秒前
10秒前
13秒前
14秒前
16秒前
脑洞疼应助阳阳采纳,获得10
19秒前
专注秋尽发布了新的文献求助10
20秒前
22秒前
默默的棒棒糖完成签到 ,获得积分10
24秒前
24秒前
SONG关注了科研通微信公众号
24秒前
25秒前
ding应助呆头采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
sutharsons应助科研通管家采纳,获得30
25秒前
axin应助科研通管家采纳,获得10
25秒前
terence应助科研通管家采纳,获得30
25秒前
研友_VZG7GZ应助科研通管家采纳,获得10
25秒前
sutharsons应助科研通管家采纳,获得30
25秒前
852应助科研通管家采纳,获得10
25秒前
hh应助科研通管家采纳,获得10
25秒前
sun发布了新的文献求助10
26秒前
26秒前
zhu完成签到,获得积分10
26秒前
酷波er应助缚大哥采纳,获得10
27秒前
李健应助明理雨筠采纳,获得10
27秒前
wang发布了新的文献求助10
29秒前
木头人给step_stone的求助进行了留言
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849