IE-Evo: Internal and External Evolution-Enhanced Temporal Knowledge Graph Forecasting

计算机科学 序列化 图形 水准点(测量) 语义学(计算机科学) 人工智能 理论计算机科学 数据挖掘 大地测量学 程序设计语言 地理 操作系统
作者
Kangzheng Liu,Feng Zhao,Guandong Xu,Shiqing Wu
标识
DOI:10.1109/icdm58522.2023.00050
摘要

Temporal knowledge graph (TKG) forecasting is widely used in various fields due to its ability to infer future events based on historical information. Modeling the internal structures and chronological dependencies of historical subgraph sequences has been proven effective. Nevertheless, on the one hand, the TKG forecasting process generally suffers from a lack of sufficient sample data due to historical resource limitations; thus, most works focus on continuously mining the patterns of historical sequences while ignoring the semantically-rich background information provided by external knowledge, especially when historical query-related information is scarce. On the other hand, when merely serializing the given subgraph sequence to mimic its temporal evolution process, only the chronological dependencies between the subgraphs can be considered, thus ignoring the evolution of time information. Hence, a method that integrates internal and external knowledge to enhance the representations of entities is urgently needed. To this end, we propose a novel TKG forecasting method, namely, the internal and external evolution-enhanced framework (IE-Evo). For the former issue, we design an external evolution encoder and use a pre-trained language model (PLM) to provide powerful external knowledge semantics for TKG forecasting. To address the latter concern, we propose an internal evolution encoder that explicitly embeds the time information while modeling the aggregation and evolution processes of the observed sequential structural information. IE-Evo has been evaluated on four public benchmark datasets, showcasing its significant improvements across multiple evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zoey发布了新的文献求助10
刚刚
汉堡包应助Ronnie采纳,获得10
5秒前
5秒前
紧张的毛衣完成签到,获得积分10
8秒前
现代的访曼应助十米采纳,获得20
10秒前
烟花应助Cici采纳,获得10
10秒前
脑洞疼应助廉洁采纳,获得10
11秒前
有魅力的问儿完成签到,获得积分10
11秒前
11秒前
徐什么宝发布了新的文献求助10
12秒前
蜡笔完成签到,获得积分10
14秒前
陈严完成签到 ,获得积分10
15秒前
灵巧水绿应助积极的连虎采纳,获得10
15秒前
15秒前
16秒前
wang完成签到,获得积分10
16秒前
三颗石头发布了新的文献求助10
17秒前
NexusExplorer应助贪玩访文采纳,获得10
18秒前
YxxxF完成签到 ,获得积分10
19秒前
wang发布了新的文献求助10
20秒前
chen发布了新的文献求助10
21秒前
试尝胆大应助freedom313514采纳,获得20
22秒前
22秒前
23秒前
23秒前
mouset270发布了新的文献求助30
23秒前
24秒前
dddyl应助科研通管家采纳,获得10
24秒前
24秒前
Owen应助科研通管家采纳,获得10
24秒前
SciGPT应助科研通管家采纳,获得10
24秒前
CodeCraft应助科研通管家采纳,获得10
24秒前
香蕉觅云应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
24秒前
Orange应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950968
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081568
捐赠科研通 3226849
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868089
科研通“疑难数据库(出版商)”最低求助积分说明 800993