亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Gellan gum microgel-reinforced cell-laden gelatin hydrogels

自愈水凝胶 明胶 结冷胶 材料科学 组织工程 化学工程 高分子化学 化学 生物医学工程 生物化学 食品科学 医学 工程类
作者
Hyung-Cheul Shin,Bradley D. Olsen,Ali Khademhosseini
出处
期刊:Journal of Materials Chemistry B [The Royal Society of Chemistry]
卷期号:2 (17): 2508-2516 被引量:49
标识
DOI:10.1039/c3tb20984a
摘要

The relatively weak mechanical properties of hydrogels remain a major drawback for their application as load-bearing tissue scaffolds. Previously, we developed cell-laden double-network (DN) hydrogels that were composed of photocrosslinkable gellan gum (GG) and gelatin. Further research into the materials as tissue scaffolds determined that the strength of the DN hydrogels decreased when they were prepared at cell-compatible conditions, and the encapsulated cells in the DN hydrogels did not function as well as they did in gelatin hydrogels. In this work, we developed microgel-reinforced (MR) hydrogels from the same two polymers, which have better mechanical strength and biological properties in comparison to the DN hydrogels. The MR hydrogels were prepared by incorporating stiff GG microgels into soft and ductile gelatin hydrogels. The MR hydrogels prepared at cell-compatible conditions exhibited higher strength than the DN hydrogels and the gelatin hydrogels, the highest strength being 2.8 times that of the gelatin hydrogels. MC3T3-E1 preosteoblasts encapsulated in MR hydrogels exhibited as high metabolic activity as in gelatin hydrogels, which is significantly higher than that in the DN hydrogels. The measurement of alkaline phosphatase (ALP) activity and the amount of mineralization showed that osteogenic behavior of MC3T3-E1 cells was as much facilitated in the MR hydrogels as in the gelatin hydrogels, while it was not as much facilitated in the DN hydrogels. These results suggest that the MR hydrogels could be a better alternative to the DN hydrogels and have great potential as load-bearing tissue scaffolds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zai完成签到 ,获得积分20
20秒前
星辰大海应助科研通管家采纳,获得10
1分钟前
1分钟前
jm发布了新的文献求助10
1分钟前
李健应助jm采纳,获得10
1分钟前
2分钟前
白桦发布了新的文献求助10
2分钟前
Xiaxia完成签到,获得积分10
2分钟前
mochalv123完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
领导范儿应助愿祖国富强采纳,获得10
3分钟前
康康XY发布了新的文献求助10
3分钟前
隐形曼青应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
dxljlxgcgc完成签到,获得积分10
7分钟前
chiazy完成签到 ,获得积分10
10分钟前
默默孱完成签到 ,获得积分10
10分钟前
早晚完成签到 ,获得积分10
12分钟前
唠叨的天亦完成签到 ,获得积分10
13分钟前
mengyuhuan完成签到 ,获得积分0
15分钟前
AUGKING27完成签到 ,获得积分10
16分钟前
yinlao完成签到,获得积分10
16分钟前
cxg完成签到,获得积分10
16分钟前
cxg发布了新的文献求助10
16分钟前
明亮的问薇完成签到,获得积分10
17分钟前
JamesPei应助科研通管家采纳,获得10
17分钟前
17分钟前
完美世界应助烽烽烽采纳,获得30
17分钟前
17分钟前
烽烽烽发布了新的文献求助30
17分钟前
18分钟前
Ambi发布了新的文献求助10
18分钟前
18分钟前
汉堡包应助李小猫采纳,获得10
18分钟前
Ambi完成签到,获得积分10
18分钟前
18分钟前
小白完成签到 ,获得积分10
18分钟前
18分钟前
高分求助中
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121645
求助须知:如何正确求助?哪些是违规求助? 2772108
关于积分的说明 7710913
捐赠科研通 2427435
什么是DOI,文献DOI怎么找? 1289328
科研通“疑难数据库(出版商)”最低求助积分说明 621386
版权声明 600145