Algorithms, Applications, and Challenges of Protein Structure Alignment

启发式 结构线形 成对比较 多序列比对 计算机科学 蛋白质结构预测 合并(版本控制) 数据结构 序列比对 自由序列分析 蛋白质结构 理论计算机科学 算法 线程(蛋白质序列) 人工智能 数据挖掘 情报检索 生物 操作系统 肽序列 基因 生物化学 程序设计语言
作者
Jianzhu Ma,Sheng Wang
出处
期刊:Advances in protein chemistry and structural biology 卷期号:: 121-175 被引量:56
标识
DOI:10.1016/b978-0-12-800168-4.00005-6
摘要

As a fundamental problem in computational structure biology, protein structure alignment has attracted the focus of the community for more than 20 years. While the pairwise structure alignment could be applied to measure the similarity between two proteins, which is a first step for homology search and fold space construction, the multiple structure alignment could be used to understand evolutionary conservation and divergence from a family of protein structures. Structure alignment is an NP-hard problem, which is only computationally tractable by using heuristics. Three levels of heuristics for pairwise structure alignment have been proposed, from the representations of protein structure, the perspectives of viewing protein as a rigid-body or flexible, to the scoring functions as well as the search algorithms for the alignment. For multiple structure alignment, the fourth level of heuristics is applied on how to merge all input structures to a multiple structure alignment. In this review, we first present a small survey of current methods for protein pairwise and multiple alignment, focusing on those that are publicly available as web servers. In more detail, we also discuss the advancements on the development of the new approaches to increase the pairwise alignment accuracy, to efficiently and reliably merge input structures to the multiple structure alignment. Finally, besides broadening the spectrum of the applications of structure alignment for protein template-based prediction, we also list several open problems that need to be solved in the future, such as the large complex alignment and the fast database search.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SandyH关注了科研通微信公众号
1秒前
1秒前
公西元柏发布了新的文献求助10
1秒前
碱性沉默发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
SciGPT应助猪猪采纳,获得10
2秒前
123发布了新的文献求助10
2秒前
独特微笑完成签到,获得积分10
2秒前
2秒前
nuonuo完成签到,获得积分10
3秒前
⊙▽⊙完成签到,获得积分10
3秒前
4秒前
MHB发布了新的文献求助50
4秒前
汉堡包应助马保国123采纳,获得10
4秒前
落晨发布了新的文献求助10
4秒前
Hello应助郑开司09采纳,获得10
5秒前
Jiangnj完成签到,获得积分10
5秒前
昵称发布了新的文献求助10
6秒前
含糊发布了新的文献求助10
6秒前
搜集达人应助8564523采纳,获得10
6秒前
无限的隶发布了新的文献求助10
6秒前
不安豁发布了新的文献求助10
6秒前
www发布了新的文献求助10
7秒前
7秒前
Crystal完成签到,获得积分10
8秒前
Laus发布了新的文献求助10
8秒前
orixero应助碱性沉默采纳,获得10
8秒前
今后应助仙子狗尾巴花采纳,获得10
8秒前
tylerconan完成签到 ,获得积分10
9秒前
9秒前
英俊的铭应助隐形的易巧采纳,获得10
10秒前
独特微笑发布了新的文献求助10
10秒前
学海无涯完成签到,获得积分10
10秒前
科研小民工应助机智苗采纳,获得30
10秒前
楼梯口无头女孩完成签到,获得积分10
13秒前
13秒前
Grayball应助gg采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762