乙二醇
PLGA公司
表面电荷
细菌
质子化
PEG比率
纳米颗粒
细菌细胞结构
组氨酸
抗生素
药物输送
生物物理学
纳米技术
化学
生物化学
材料科学
体外
酶
有机化学
生物
遗传学
离子
物理化学
财务
经济
作者
Aleksandar F. Radovic‐Moreno,Timothy K. Lu,Vlad A. Puscasu,Sung-Soo Yoon,Róbert Langer,Omid C. Farokhzad
出处
期刊:ACS Nano
[American Chemical Society]
日期:2012-04-04
卷期号:6 (5): 4279-4287
被引量:484
摘要
Bacteria have shown a remarkable ability to overcome drug therapy if there is a failure to achieve sustained bactericidal concentration or if there is a reduction in activity in situ. The latter can be caused by localized acidity, a phenomenon that can occur as a result of the combined actions of bacterial metabolism and the host immune response. Nanoparticles (NP) have shown promise in treating bacterial infections, but a significant challenge has been to develop antibacterial NPs that may be suitable for systemic administration. Herein we develop drug-encapsulated, pH-responsive, surface charge-switching poly(d,l-lactic-co-glycolic acid)-b-poly(l-histidine)-b-poly(ethylene glycol) (PLGA-PLH-PEG) nanoparticles for treating bacterial infections. These NP drug carriers are designed to shield nontarget interactions at pH 7.4 but bind avidly to bacteria in acidity, delivering drugs and mitigating in part the loss of drug activity with declining pH. The mechanism involves pH-sensitive NP surface charge switching, which is achieved by selective protonation of the imidazole groups of PLH at low pH. NP binding studies demonstrate pH-sensitive NP binding to bacteria with a 3.5 ± 0.2- to 5.8 ± 0.1-fold increase in binding to bacteria at pH 6.0 compared to 7.4. Further, PLGA-PLH-PEG-encapsulated vancomycin demonstrates reduced loss of efficacy at low pH, with an increase in minimum inhibitory concentration of 1.3-fold as compared to 2.0-fold and 2.3-fold for free and PLGA-PEG-encapsulated vancomycin, respectively. The PLGA-PLH-PEG NPs described herein are a first step toward developing systemically administered drug carriers that can target and potentially treat Gram-positive, Gram-negative, or polymicrobial infections associated with acidity.
科研通智能强力驱动
Strongly Powered by AbleSci AI