Estimation reference crop evapotranspiration (ET0) using artificial intelligence model in an arid climate with external data

自适应神经模糊推理系统 均方误差 蒸散量 人工神经网络 风速 决定系数 数学 彭曼-蒙蒂斯方程 统计 计算机科学 环境科学 模糊逻辑 气象学 机器学习 人工智能 模糊控制系统 生态学 地理 生物
作者
M. Zolfaghari email B. Shabanpour A. Shabani F. Shirani Bidabadi,Hossein Babazadeh,Jalal Shiri,Ali Saremi
出处
期刊:Applied Water Science [Springer Nature]
卷期号:14 (1) 被引量:4
标识
DOI:10.1007/s13201-023-02058-2
摘要

Abstract Water resource management and crop growth control require the calculation of reference evapotranspiration (ET0), but meteorological data can often be incomplete, necessitating models with minimal inputs. This study was conducted in Iran’s arid synoptic stations of Sirjan and Kerman, where data scarcity is severe. Penman–Monteith FAO-56 was selected as the target data for modeling artificial neural network (ANN), fuzzy neural adaptive inference system (ANFIS), and ANN-gray wolf optimization (ANN-GWO). The performance of these models was evaluated using an input dataset consisting of the current station’s minimum and maximum temperatures, ET0, and the wind speed of the nearby station (external data) in three different combinations. The models’ accuracy was assessed using two widely used criteria: root mean square error (RMSE) and coefficient of determination ( R 2 ), as well as the empirical Hargreaves equation. In the absence of climatic data, the ANFIS, ANN, and ANN-GWO methods using minimum and maximum temperatures, which are relatively easier to estimate, outperformed the empirical Hargreaves equation method in both stations. The results demonstrate that the ANFIS method performed better than ANN and ANN-GWO in all three input combinations. All three methods showed improvement when external data (wind speed and ET0 of the adjacent station) were used. Ultimately, the ANFIS method using minimum and maximum temperatures and the adjacent station’s ET0 in Kerman and Sirjan yielded the best results, with an RMSE of 0.33 and 0.36, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助自觉的笑寒采纳,获得10
1秒前
高手完成签到,获得积分10
1秒前
Mr_X发布了新的文献求助10
1秒前
缥缈夏彤完成签到,获得积分10
2秒前
bkagyin应助devoel采纳,获得10
2秒前
彭于晏应助aliu采纳,获得10
2秒前
小木棉完成签到 ,获得积分10
2秒前
大海风发布了新的文献求助20
3秒前
隐形曼青应助pianoboy采纳,获得10
4秒前
lovexy发布了新的文献求助10
4秒前
好好学就能演完成签到,获得积分10
4秒前
乖乖君完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
kingwill应助111采纳,获得20
8秒前
古果完成签到,获得积分10
8秒前
拼搏诗翠发布了新的文献求助10
9秒前
赘婿应助不吃香菜采纳,获得10
9秒前
9秒前
9秒前
脑洞疼应助Mr_X采纳,获得10
10秒前
一个千年猪妖完成签到,获得积分10
10秒前
西瓜刀发布了新的文献求助20
11秒前
古果发布了新的文献求助10
11秒前
英俊的铭应助goinggo采纳,获得10
12秒前
今后应助yaya采纳,获得10
12秒前
Zurlliant发布了新的文献求助10
13秒前
hp发布了新的文献求助10
14秒前
大强完成签到,获得积分10
14秒前
Raintoo_发布了新的文献求助10
15秒前
lovexy完成签到,获得积分20
15秒前
15秒前
16秒前
CipherSage应助WHY采纳,获得10
17秒前
Mr_X完成签到,获得积分20
17秒前
17秒前
18秒前
20秒前
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748491
求助须知:如何正确求助?哪些是违规求助? 3291508
关于积分的说明 10073402
捐赠科研通 3007382
什么是DOI,文献DOI怎么找? 1651565
邀请新用户注册赠送积分活动 786479
科研通“疑难数据库(出版商)”最低求助积分说明 751752