Investigating the Interpretability of Schizophrenia EEG Mechanism through a 3DCNN-based Hidden Layer Features Aggregation Framework

可解释性 机制(生物学) 精神分裂症(面向对象编程) 计算机科学 图层(电子) 脑电图 人工智能 机器学习 模式识别(心理学) 神经科学 认知心理学 心理学 化学 哲学 有机化学 认识论 程序设计语言
作者
Zhifen Guo,Jiao Wang,Tianyu Jing,Longyue Fu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:: 108105-108105
标识
DOI:10.1016/j.cmpb.2024.108105
摘要

Electroencephalogram (EEG) signals record brain activity, with growing interest in quantifying neural activity through complexity analysis as a potential biological marker for schizophrenia. Presently, EEG complexity analysis primarily relies on manual feature extraction, which is subjective and yields varied findings in studies involving schizophrenia and healthy controls. This study aims to leverage deep learning methods for enhanced EEG complexity exploration, aiding early schizophrenia screening and diagnosis. Our proposed approach utilizes a three-dimensional Convolutional Neural Network (3DCNN) to extract enhanced data features for early schizophrenia identification and subsequent complexity analysis. Leveraging the spatiotemporal capabilities of 3DCNN, we extract advanced latent features and employ knowledge distillation to reintegrate these features into the original channels, creating feature-enhanced data. We employ a 10-fold cross-validation strategy, achieving the average accuracies of 99.46% and 98.06% in subject-dependent experiments on Dataset 1(14SZ and 14HC) and Dataset 2 (45SZ and 39HC). The average accuracy for subject-independent is 96.04% and 92.67% on both datasets. Feature extraction and classification are conducted on both the re-aggregated data and the original data. Our results demonstrate that re-aggregated data exhibit superior classification performance and a more stable training process after feature extraction. In the complexity analysis of re-aggregated data, we observe lower entropy features in schizophrenic patients compared to healthy controls, with more pronounced differences in the temporal and frontal lobes. Analyzing Katz's Fractal Dimension (KFD) across three sub-bands of lobe channels reveals the lowest α band KFD value in schizophrenia patients. This emphasizes the ability of our method to enhance the discrimination and interpretability in schizophrenia detection and analysis. Our approach enhances the potential for EEG-based schizophrenia diagnosis by leveraging deep learning, offering superior discrimination capabilities and richer interpretive insights.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赵振辉完成签到,获得积分10
1秒前
guantlv完成签到,获得积分10
2秒前
万能图书馆应助lsy采纳,获得10
2秒前
wy.he应助Xy采纳,获得10
3秒前
赵振辉发布了新的文献求助10
4秒前
Akim应助老阳采纳,获得10
9秒前
15秒前
15秒前
16秒前
lsy发布了新的文献求助10
19秒前
老阳发布了新的文献求助10
20秒前
21秒前
我是老大应助1762120采纳,获得10
22秒前
25秒前
cheer发布了新的文献求助10
26秒前
平淡的采文完成签到,获得积分10
28秒前
Z赵完成签到 ,获得积分10
28秒前
风声鹤立完成签到 ,获得积分10
31秒前
科研通AI5应助黄晃晃采纳,获得10
31秒前
思源应助quanjia采纳,获得10
33秒前
好你个小番茄关注了科研通微信公众号
33秒前
34秒前
cheer完成签到,获得积分20
35秒前
37秒前
37秒前
星辰大海应助lve采纳,获得10
37秒前
38秒前
40秒前
怕高的土完成签到,获得积分10
41秒前
41秒前
43秒前
希望天下0贩的0应助wdb采纳,获得10
43秒前
44秒前
Lucas应助莎莎采纳,获得10
45秒前
wanci应助老阳采纳,获得10
45秒前
46秒前
47秒前
47秒前
48秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738649
求助须知:如何正确求助?哪些是违规求助? 3282012
关于积分的说明 10027267
捐赠科研通 2998753
什么是DOI,文献DOI怎么找? 1645497
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749975