Learning to Predict Object-Wise Just Recognizable Distortion for Image and Video Compression

计算机科学 人工智能 图像压缩 计算机视觉 数据压缩 图像(数学) 图像处理
作者
Yun Zhang,Haoqin Lin,Jing Sun,Linwei Zhu,Sam Kwong
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 5925-5938 被引量:2
标识
DOI:10.1109/tmm.2023.3340882
摘要

Just Recognizable Distortion (JRD) refers to the minimum distortion that notably affects the recognition performance of a machine vision model. If a distortion added to images or videos falls within this JRD threshold, the degradation of the recognition performance will be unnoticeable. Based on this JRD property, it will be useful to Video Coding for Machine (VCM) to minimize the bit rate while maintaining the recognition performance of compressed images. In this study, we propose a deep learning-based JRD prediction model for image and video compression. We first construct a large image dataset of Object-Wise JRD (OW-JRD) containing 29,218 original images with 80 object categories, and each image was compressed into 64 distorted versions using Versatile Video Coding (VVC). Secondly, we analyze of the distribution of the OW-JRD, formulate JRD prediction as binary classification problems and propose a deep learning-based OW-JRD prediction framework. Thirdly, we propose a deep learning based binary OW-JRD predictor to predict whether an image object is still detectable or not under different compression levels. Also, we propose an error-tolerance strategy that corrects misclassifications from the binary classifier. Finally, extensive experiments on large JRD image datasets demonstrate that the Mean Absolute Errors (MAEs) of the predicted OW-JRD are 4.90 and 5.92 on different numbers of the classes, which is significantly better than the state-of-the-art JRD prediction model. Moreover, ablation studies on deep network structures, object sizes, features, data padding strategies and image/video coding schemes are presented to validate the effectiveness of the proposed JRD model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让涵菡完成签到 ,获得积分10
1秒前
王耀武完成签到,获得积分10
1秒前
朴素念之完成签到,获得积分20
2秒前
2秒前
学术裁缝发布了新的文献求助10
2秒前
连冬萱发布了新的文献求助10
2秒前
ruby完成签到,获得积分10
2秒前
大魔王完成签到 ,获得积分10
3秒前
zhang完成签到,获得积分10
3秒前
YW发布了新的文献求助30
3秒前
xg发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
踏实绮露完成签到 ,获得积分10
7秒前
7秒前
iam小羊人完成签到,获得积分20
8秒前
8秒前
9秒前
失眠无声完成签到,获得积分10
9秒前
Jiang完成签到,获得积分10
10秒前
大模型应助称心的乘云采纳,获得10
10秒前
桐桐应助lw采纳,获得10
11秒前
11秒前
Hello应助连冬萱采纳,获得30
12秒前
12秒前
13秒前
Rain_BJ发布了新的文献求助10
13秒前
Carolin完成签到,获得积分10
14秒前
孙宗帅发布了新的文献求助10
14秒前
14秒前
iam小羊人发布了新的文献求助20
14秒前
15秒前
下雨天睡个懒觉完成签到,获得积分10
16秒前
丘比特应助强壮的美女采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
认真灯泡完成签到,获得积分10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226726
求助须知:如何正确求助?哪些是违规求助? 4398101
关于积分的说明 13688414
捐赠科研通 4262779
什么是DOI,文献DOI怎么找? 2339284
邀请新用户注册赠送积分活动 1336666
关于科研通互助平台的介绍 1292702