亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning to Predict Object-Wise Just Recognizable Distortion for Image and Video Compression

计算机科学 人工智能 图像压缩 计算机视觉 数据压缩 图像(数学) 图像处理
作者
Yun Zhang,Haoqin Lin,Jing Sun,Linwei Zhu,Sam Kwong
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 5925-5938
标识
DOI:10.1109/tmm.2023.3340882
摘要

Just Recognizable Distortion (JRD) refers to the minimum distortion that notably affects the recognition performance of a machine vision model. If a distortion added to images or videos falls within this JRD threshold, the degradation of the recognition performance will be unnoticeable. Based on this JRD property, it will be useful to Video Coding for Machine (VCM) to minimize the bit rate while maintaining the recognition performance of compressed images. In this study, we propose a deep learning-based JRD prediction model for image and video compression. We first construct a large image dataset of Object-Wise JRD (OW-JRD) containing 29,218 original images with 80 object categories, and each image was compressed into 64 distorted versions using Versatile Video Coding (VVC). Secondly, we analyze of the distribution of the OW-JRD, formulate JRD prediction as binary classification problems and propose a deep learning-based OW-JRD prediction framework. Thirdly, we propose a deep learning based binary OW-JRD predictor to predict whether an image object is still detectable or not under different compression levels. Also, we propose an error-tolerance strategy that corrects misclassifications from the binary classifier. Finally, extensive experiments on large JRD image datasets demonstrate that the Mean Absolute Errors (MAEs) of the predicted OW-JRD are 4.90 and 5.92 on different numbers of the classes, which is significantly better than the state-of-the-art JRD prediction model. Moreover, ablation studies on deep network structures, object sizes, features, data padding strategies and image/video coding schemes are presented to validate the effectiveness of the proposed JRD model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
汉堡包应助choyng采纳,获得10
5秒前
归海梦岚完成签到,获得积分10
11秒前
朱珠贝完成签到,获得积分10
11秒前
SciGPT应助科研通管家采纳,获得10
14秒前
bjyx完成签到,获得积分20
15秒前
15秒前
20秒前
22秒前
22秒前
33秒前
海豚完成签到 ,获得积分10
36秒前
39秒前
41秒前
42秒前
领导范儿应助如沐春风采纳,获得10
46秒前
尊敬背包发布了新的文献求助10
49秒前
佳宝(不可以喝但能吃完成签到,获得积分10
51秒前
56秒前
充电宝应助尊敬背包采纳,获得10
58秒前
满座完成签到 ,获得积分10
1分钟前
iNk应助如沐春风采纳,获得10
1分钟前
善学以致用应助xuan采纳,获得10
1分钟前
小王完成签到 ,获得积分10
1分钟前
1分钟前
陈静完成签到,获得积分10
1分钟前
NexusExplorer应助IIIKERUI采纳,获得10
1分钟前
如沐春风完成签到,获得积分10
1分钟前
xuan发布了新的文献求助10
1分钟前
宜醉宜游宜睡应助陈静采纳,获得10
1分钟前
Hello应助Julie采纳,获得10
1分钟前
xuan完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
快乐的如风完成签到,获得积分10
2分钟前
2分钟前
英勇羿发布了新的文献求助100
2分钟前
2分钟前
2分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146703
求助须知:如何正确求助?哪些是违规求助? 2798015
关于积分的说明 7826470
捐赠科研通 2454516
什么是DOI,文献DOI怎么找? 1306328
科研通“疑难数据库(出版商)”最低求助积分说明 627704
版权声明 601522