Learning to Predict Object-Wise Just Recognizable Distortion for Image and Video Compression

计算机科学 人工智能 图像压缩 计算机视觉 数据压缩 图像(数学) 图像处理
作者
Yun Zhang,Haoqin Lin,Jing Sun,Linwei Zhu,Sam Kwong
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 5925-5938 被引量:2
标识
DOI:10.1109/tmm.2023.3340882
摘要

Just Recognizable Distortion (JRD) refers to the minimum distortion that notably affects the recognition performance of a machine vision model. If a distortion added to images or videos falls within this JRD threshold, the degradation of the recognition performance will be unnoticeable. Based on this JRD property, it will be useful to Video Coding for Machine (VCM) to minimize the bit rate while maintaining the recognition performance of compressed images. In this study, we propose a deep learning-based JRD prediction model for image and video compression. We first construct a large image dataset of Object-Wise JRD (OW-JRD) containing 29,218 original images with 80 object categories, and each image was compressed into 64 distorted versions using Versatile Video Coding (VVC). Secondly, we analyze of the distribution of the OW-JRD, formulate JRD prediction as binary classification problems and propose a deep learning-based OW-JRD prediction framework. Thirdly, we propose a deep learning based binary OW-JRD predictor to predict whether an image object is still detectable or not under different compression levels. Also, we propose an error-tolerance strategy that corrects misclassifications from the binary classifier. Finally, extensive experiments on large JRD image datasets demonstrate that the Mean Absolute Errors (MAEs) of the predicted OW-JRD are 4.90 and 5.92 on different numbers of the classes, which is significantly better than the state-of-the-art JRD prediction model. Moreover, ablation studies on deep network structures, object sizes, features, data padding strategies and image/video coding schemes are presented to validate the effectiveness of the proposed JRD model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
EZboom发布了新的文献求助10
1秒前
2秒前
天天快乐应助加百莉采纳,获得10
2秒前
科目三应助呆妞采纳,获得10
3秒前
3秒前
小巧曼容完成签到,获得积分10
3秒前
4秒前
黄臻发布了新的文献求助10
7秒前
温暖逊发布了新的文献求助10
9秒前
10秒前
liuynnn发布了新的文献求助10
12秒前
zhou完成签到,获得积分10
12秒前
13秒前
14秒前
加百莉发布了新的文献求助10
14秒前
apparate完成签到,获得积分10
17秒前
呆妞发布了新的文献求助10
19秒前
liuynnn完成签到,获得积分20
21秒前
天才小仙女完成签到,获得积分10
24秒前
行星一只兔完成签到 ,获得积分10
26秒前
BowieHuang应助Jodie采纳,获得100
27秒前
Orange应助chichi采纳,获得10
29秒前
南风完成签到 ,获得积分10
31秒前
彪壮的吐司完成签到,获得积分10
33秒前
zhouxw27完成签到,获得积分10
41秒前
akiyy完成签到,获得积分10
41秒前
无花果应助akiyy采纳,获得10
44秒前
Juid举报老阎求助涉嫌违规
51秒前
快乐的90后fjk完成签到 ,获得积分10
52秒前
good完成签到,获得积分10
53秒前
54秒前
54秒前
1分钟前
幽默沛山完成签到 ,获得积分10
1分钟前
good发布了新的文献求助10
1分钟前
端庄的奇异果完成签到 ,获得积分10
1分钟前
1分钟前
BroaI完成签到,获得积分20
1分钟前
狂野天蓝发布了新的文献求助10
1分钟前
搜集达人应助gj2221423采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557689
求助须知:如何正确求助?哪些是违规求助? 4642768
关于积分的说明 14669036
捐赠科研通 4584191
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459538