Hashing for Retrieving Long-tailed Distributed Remote Sensing Images

计算机科学 散列函数 水准点(测量) 数据挖掘 哈希表 图像检索 人工智能 图像(数学) 机器学习 计算机安全 大地测量学 地理
作者
Lirong Han,Mercedes E. Paoletti,Sergio Moreno‐Álvarez,Juan M. Haut,Rafael Vargas,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14
标识
DOI:10.1109/tgrs.2024.3360621
摘要

The widespread availability of remotely sensed datasets establishes a cornerstone for comprehensive image retrieval within the realm of remote sensing (RS). In response, the investigation into hashing-driven retrieval methods garners significance, enabling proficient image acquisition within such extensive data magnitudes. Nevertheless, the used datasets in practical applications are invariably less desirable and with long-tailed distribution. The primary hurdle pertains to the substantial discrepancy in class volumes. Moreover, commonly utilized RS datasets for hashing tasks encompass approximately two to three dozen classes. However, real-world datasets exhibit a randomized number of classes, introducing a challenging variability. This paper proposes a new centripetal intensive attention hashing (CIAH) mechanism based on intensive attention features for long-tailed distribution RS image retrieval. Specifically, an intensive attention module (IAM) is adopted to enhance the significant features to facilitate the subsequent generation of representative hash codes. Furthermore, to deal with the inherent imbalance of long-tailed distributed datasets, the utilization of a centripetal loss function is introduced. This endeavor constitutes the inaugural effort towards long-tailed distributed RS image retrieval. In pursuit of this objective, a collection of long-tail datasets is meticulously curated using four widely recognized RS datasets, subsequently disseminated as benchmark datasets. The selected fundamental datasets contain 7, 25, 38 and 45 land use classes to mimic different real RS datasets. Conducted experiments demonstrate the proposed methodology attains a performance benchmark that surpasses currently existing methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
欣喜的书芹完成签到 ,获得积分10
4秒前
黎某完成签到,获得积分10
7秒前
微毒麻醉发布了新的文献求助10
7秒前
图图完成签到,获得积分10
8秒前
8秒前
Ava应助研友_Ze2vV8采纳,获得10
11秒前
11秒前
12秒前
倪l完成签到,获得积分10
13秒前
liu发布了新的文献求助10
15秒前
和和和完成签到,获得积分10
17秒前
18秒前
充电宝应助科研通管家采纳,获得10
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
NICAI应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
嘿嘿应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
慕青应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
今后应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
21秒前
哈哈发布了新的文献求助10
22秒前
JamesPei应助研友_Ze2vV8采纳,获得10
22秒前
英姑应助怕黑傲珊采纳,获得10
23秒前
29秒前
oi发布了新的文献求助10
29秒前
共享精神应助研友_Ze2vV8采纳,获得10
33秒前
微毒麻醉完成签到,获得积分10
33秒前
果果完成签到,获得积分10
35秒前
35秒前
是真灵还是机灵完成签到 ,获得积分10
36秒前
Tabby完成签到,获得积分10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741468
求助须知:如何正确求助?哪些是违规求助? 3284100
关于积分的说明 10038512
捐赠科研通 3000962
什么是DOI,文献DOI怎么找? 1646907
邀请新用户注册赠送积分活动 783919
科研通“疑难数据库(出版商)”最低求助积分说明 750478