Interpretable machine learning-assisted design of Fe-based nanocrystalline alloys with high saturation magnetic induction and low coercivity

矫顽力 纳米晶材料 材料科学 价(化学) 饱和(图论) 人工智能 机器学习 计算机科学 分析化学(期刊) 算法 凝聚态物理 纳米技术 数学 化学 物理 色谱法 有机化学 组合数学
作者
Ning Zhang,Aina He,Gan Zhang,Ping Cai,Bojun Zhang,Yufan Ling,Yaqiang Dong,Jiawei Li,Qikui Man,Biao Shen
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:188: 73-83
标识
DOI:10.1016/j.jmst.2023.12.009
摘要

Overcoming the trade-off between saturation magnetic induction (Bs) and coercivity (Hc) of Fe-based nanocrystalline alloys (FNAs) remains a great challenge due to the traditional design relying on trial-and-error methods, which are time-consuming and inefficient. Herein, we present an interpretable machine learning (ML) algorithm for the effective design of advanced FNAs with improved Bs and low Hc. Firstly, the FNAs datasets were established, consisting of 20 features including chemical composition, process parameters, and theoretically calculated parameters. Subsequently, a three-step feature selection was used to screen the key features that affect the Bs and Hc of FNAs. Among six different ML algorithms, extreme gradient boosting (XGBoost) performed the best in predicting Bs and Hc. We further revealed the association of key features with Bs and Hc through linear regression and SHAP analysis. The valence electron concentration without Fe, Ni, and Co elements (VEC1) and valence electron concentration (VEC) ranked as the most important features for predicting Bs and Hc, respectively. VEC1 had a positive impact on Bs when VEC1 < 0.78, while VEC had a negative effect on Hc when VEC < 7.12. Optimized designed FNAs were successfully prepared, and the prediction errors for Bs and Hc are lower than 2.3% and 18%, respectively, when comparing the predicted and experimental results. These results demonstrate that this ML approach is interpretable and feasible for the design of advanced FNAs with high Bs and low Hc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵怡梦发布了新的文献求助30
刚刚
549sysfzr发布了新的文献求助10
刚刚
shanika完成签到,获得积分10
1秒前
hucchongzi应助科研通管家采纳,获得200
1秒前
整点薯条应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
彭于彦祖应助科研通管家采纳,获得20
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
彭于彦祖应助科研通管家采纳,获得30
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
板板完成签到,获得积分10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得30
2秒前
Hello应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
3秒前
满意铁身发布了新的文献求助10
3秒前
公冶大楚完成签到,获得积分10
3秒前
善学以致用应助辛勤夜安采纳,获得10
4秒前
4秒前
樊尔风发布了新的文献求助10
5秒前
小蘑菇应助认真的鸭子采纳,获得10
6秒前
7秒前
mookamei发布了新的文献求助10
7秒前
小媛发布了新的文献求助10
7秒前
搬砖颽完成签到,获得积分20
7秒前
Hello应助549sysfzr采纳,获得10
8秒前
小何同学发布了新的文献求助10
8秒前
1x完成签到,获得积分10
8秒前
有风塘完成签到,获得积分10
9秒前
苗苗子子完成签到,获得积分10
9秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159124
求助须知:如何正确求助?哪些是违规求助? 2810283
关于积分的说明 7887027
捐赠科研通 2469127
什么是DOI,文献DOI怎么找? 1314668
科研通“疑难数据库(出版商)”最低求助积分说明 630671
版权声明 602012