Region-Based Hybrid Collaborative Perception for Connected Autonomous Vehicles

稳健性(进化) 计算机科学 目标检测 建筑 人工智能 带宽(计算) 背景(考古学) 感知 传感器融合 实时计算 分布式计算 机器学习 模式识别(心理学) 计算机网络 生物 基因 艺术 古生物学 视觉艺术 生物化学 神经科学 化学
作者
Pengfei Liu,Zhangyu Wang,Guizhen Yu,Bin Zhou,Peng Chen
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (3): 3119-3128 被引量:2
标识
DOI:10.1109/tvt.2023.3324439
摘要

Collaborative perception is considered as an effective approach in solving the problem for the limited fields-of-view of single vehicle. Recent studies focused on single collaboration strategy (i.e., early, intermediate, or late collaboration). However, it is difficult to achieve a balance between accuracy and transmission data size. To overcome this limitation, a region-based hybrid collaborative perception architecture for connected autonomous vehicles is proposed in this study. Specifically, data is divided into two types according to the overlapping area between the detection ranges of vehicles. For the overlapping area, intermediate collaboration is applied by sharing and fusing the features from different vehicles. The fusion model comprises the proposed cross-agents attention and global context attention modules to adaptively highlight the critical features and capture the long-range dependency, thereby improving the detection accuracy. Moreover, an object detection head based on the Gaussian mixture model (GMM) is proposed to enhance the robustness to location noise. For the non-overlapping area, late collaboration is conducted by generating and sharing the local detection result with an economic bandwidth. Finally, the experiment with the OPV2V dataset is conducted to evaluate the performance of the proposed architecture. The results show that the proposed architecture achieved 83.6% AP, outperforming the state-of-art methods. Additionally, the experiments also prove that the network with GMM module is more robust to noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
echo发布了新的文献求助10
刚刚
微澜完成签到,获得积分10
刚刚
BINGOFAN发布了新的文献求助10
1秒前
丁仪发布了新的文献求助10
1秒前
ksiswl发布了新的文献求助10
1秒前
邱清完成签到,获得积分10
2秒前
微澜发布了新的文献求助10
3秒前
干净士晋完成签到,获得积分10
3秒前
vv完成签到,获得积分10
4秒前
Hello应助拾野之苹采纳,获得10
5秒前
CXS完成签到,获得积分10
5秒前
HX完成签到,获得积分10
7秒前
大模型应助乐观信封采纳,获得30
7秒前
英姑应助silong采纳,获得10
8秒前
丁仪完成签到,获得积分10
9秒前
9秒前
11秒前
海洋完成签到,获得积分10
11秒前
11秒前
giao完成签到,获得积分10
12秒前
12秒前
英俊的铭应助Rixxed采纳,获得10
12秒前
舍曲林发布了新的文献求助10
12秒前
阿七完成签到,获得积分10
15秒前
苹果完成签到,获得积分10
15秒前
16秒前
苇一完成签到,获得积分10
16秒前
aaa完成签到,获得积分10
16秒前
maodoujie完成签到,获得积分20
17秒前
18秒前
qian发布了新的文献求助10
19秒前
英姑应助堵得慌采纳,获得10
19秒前
20秒前
21秒前
22秒前
无花果应助maodoujie采纳,获得10
22秒前
微微完成签到 ,获得积分10
22秒前
李李完成签到,获得积分10
22秒前
luren关注了科研通微信公众号
23秒前
muhaixingyun发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552503
求助须知:如何正确求助?哪些是违规求助? 3128579
关于积分的说明 9378740
捐赠科研通 2827750
什么是DOI,文献DOI怎么找? 1554537
邀请新用户注册赠送积分活动 725515
科研通“疑难数据库(出版商)”最低求助积分说明 714980