Self-Supervised Versus Supervised Training for Segmentation of Organoid Images

计算机科学 人工智能 分割 模式识别(心理学) 深度学习 编码器 监督学习 任务(项目管理) 机器学习 计算机视觉 人工神经网络 操作系统 经济 管理
作者
Asmaa Haja,E.A.M. Brouwer,Lambert Schomaker
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2311.11198
摘要

The process of annotating relevant data in the field of digital microscopy can be both time-consuming and especially expensive due to the required technical skills and human-expert knowledge. Consequently, large amounts of microscopic image data sets remain unlabeled, preventing their effective exploitation using deep-learning algorithms. In recent years it has been shown that a lot of relevant information can be drawn from unlabeled data. Self-supervised learning (SSL) is a promising solution based on learning intrinsic features under a pretext task that is similar to the main task without requiring labels. The trained result is transferred to the main task - image segmentation in our case. A ResNet50 U-Net was first trained to restore images of liver progenitor organoids from augmented images using the Structural Similarity Index Metric (SSIM), alone, and using SSIM combined with L1 loss. Both the encoder and decoder were trained in tandem. The weights were transferred to another U-Net model designed for segmentation with frozen encoder weights, using Binary Cross Entropy, Dice, and Intersection over Union (IoU) losses. For comparison, we used the same U-Net architecture to train two supervised models, one utilizing the ResNet50 encoder as well as a simple CNN. Results showed that self-supervised learning models using a 25\% pixel drop or image blurring augmentation performed better than the other augmentation techniques using the IoU loss. When trained on only 114 images for the main task, the self-supervised learning approach outperforms the supervised method achieving an F1-score of 0.85, with higher stability, in contrast to an F1=0.78 scored by the supervised method. Furthermore, when trained with larger data sets (1,000 images), self-supervised learning is still able to perform better, achieving an F1-score of 0.92, contrasting to a score of 0.85 for the supervised method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小文完成签到 ,获得积分10
9秒前
顺利的冰旋完成签到 ,获得积分10
10秒前
11秒前
偏翩完成签到 ,获得积分10
12秒前
zhl完成签到,获得积分10
13秒前
童年的回忆klwqqt完成签到,获得积分10
14秒前
111完成签到 ,获得积分10
17秒前
isedu完成签到,获得积分10
29秒前
yellowonion完成签到 ,获得积分10
30秒前
科研通AI2S应助科研通管家采纳,获得30
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
航行天下完成签到 ,获得积分10
38秒前
周冷之完成签到 ,获得积分10
39秒前
bkagyin应助kiki采纳,获得10
39秒前
从容的水壶完成签到 ,获得积分10
51秒前
微生完成签到 ,获得积分10
55秒前
56秒前
1分钟前
qq完成签到 ,获得积分10
1分钟前
xzh完成签到 ,获得积分10
1分钟前
1分钟前
kiki发布了新的文献求助10
1分钟前
胡强发布了新的文献求助10
1分钟前
kiki完成签到,获得积分10
1分钟前
愉快道之完成签到 ,获得积分10
1分钟前
loren313完成签到,获得积分0
1分钟前
科目三应助胡强采纳,获得10
1分钟前
迅速千愁完成签到 ,获得积分10
1分钟前
LT完成签到 ,获得积分10
1分钟前
Axs完成签到,获得积分10
1分钟前
艮爚完成签到 ,获得积分10
1分钟前
ceeray23应助阿鑫采纳,获得10
1分钟前
图喵喵完成签到,获得积分10
2分钟前
2分钟前
pgyq发布了新的文献求助10
2分钟前
小乙猪完成签到 ,获得积分0
2分钟前
小田完成签到 ,获得积分10
2分钟前
2分钟前
wBw完成签到,获得积分10
2分钟前
阿鑫发布了新的文献求助10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450467
求助须知:如何正确求助?哪些是违规求助? 3045952
关于积分的说明 9003800
捐赠科研通 2734611
什么是DOI,文献DOI怎么找? 1500096
科研通“疑难数据库(出版商)”最低求助积分说明 693341
邀请新用户注册赠送积分活动 691477