Two-layer coordinated reinforcement learning for traffic signal control in traffic network

交叉口(航空) 强化学习 计算机科学 排队 信号(编程语言) 控制(管理) 国家(计算机科学) 实时计算 计算机网络 人工智能 运输工程 算法 工程类 程序设计语言
作者
Fuyue Ren,Wei Dong,Xiaodong Zhao,Fan Zhang,Yaguang Kong,Qiang Yang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:235: 121111-121111 被引量:4
标识
DOI:10.1016/j.eswa.2023.121111
摘要

Intersection traffic signal control considering vehicle emissions has become an important topic, however, the decision complexity of traffic signal control increases dramatically in a dynamic traffic environment with multi-intersections. It is a severe challenge to coordinate traffic signals at multi-intersections based on Internet of Things information to improve the traffic condition of the road network. This paper proposes a two-layer coordination algorithm based on multi-agent reinforcement learning—Multi-agent Coordinated Policy Optimization (MACoPO), for solving traffic signal control at multi-intersections. MACoPO consists of local cooperation, which adjusts the weights of individual rewards and neighborhood agents' rewards by using local cooperation factors (LCF), and global coordination, which updates the LCF to maximize global rewards. The state and reward functions are designed in terms of the current state of the signal, waiting queue length, vehicle density and emission concentration in the lane, vehicle delay, and vehicle emissions, thus making full use of the intersection state information. The proposed method is extensively assessed through simulation experiments using artificial and real road networks and the numerical results confirm its effectiveness in complex and dynamic real-time traffic environments with multi-intersections.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
奥福少摩完成签到,获得积分10
1秒前
nothing发布了新的文献求助10
1秒前
1秒前
woosoon发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
鲸落发布了新的文献求助10
2秒前
wu发布了新的文献求助10
2秒前
斯文败类应助煌煌采纳,获得10
2秒前
魏林娟发布了新的文献求助10
3秒前
文艺鞋子发布了新的文献求助10
3秒前
鸽子发布了新的文献求助30
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
无花果应助瓷穹采纳,获得10
4秒前
4秒前
李健应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
4秒前
Jared应助科研通管家采纳,获得10
4秒前
李健应助宋汶静采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得30
4秒前
YXHTCM完成签到,获得积分10
4秒前
Sihan完成签到,获得积分10
4秒前
4秒前
Jared应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Carrie发布了新的文献求助10
4秒前
4秒前
Owen应助科研通管家采纳,获得10
4秒前
研友_ZzrWKZ发布了新的文献求助10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619653
求助须知:如何正确求助?哪些是违规求助? 4704273
关于积分的说明 14927050
捐赠科研通 4760246
什么是DOI,文献DOI怎么找? 2550622
邀请新用户注册赠送积分活动 1513424
关于科研通互助平台的介绍 1474450