THA-Net: A Deep Learning Solution for Next-Generation Templating and Patient-specific Surgical Execution

射线照相术 人工智能 深度学习 计算机科学 医学 外科
作者
Pouria Rouzrokh,Bardia Khosravi,John P. Mickley,Bradley J. Erickson,Michael J. Taunton,Cody C. Wyles
出处
期刊:Journal of Arthroplasty [Elsevier]
卷期号:39 (3): 727-733.e4 被引量:6
标识
DOI:10.1016/j.arth.2023.08.063
摘要

Abstract

Background

This study introduces THA-Net, a deep learning inpainting algorithm for simulating postoperative total hip arthroplasty (THA) radiographs from a single preoperative pelvis radiograph input, while being able to generate predictions either unconditionally (algorithm chooses implants) or conditionally (surgeon chooses implants).

Methods

The THA-Net is a deep learning algorithm which receives an input preoperative radiograph and subsequently replaces the target hip joint with THA implants to generate a synthetic yet realistic postoperative radiograph. We trained THA-Net on 356,305 pairs of radiographs from 14,357 patients from a single institution's total joint registry and evaluated the validity (quality of surgical execution) and realism (ability to differentiate real and synthetic radiographs) of its outputs against both human-based and software-based criteria.

Results

The surgical validity of synthetic postoperative radiographs was significantly higher than their real counterparts (mean difference: 0.8 to 1.1 points on 10-point Likert scale, P < .001), but they were not able to be differentiated in terms of realism in blinded expert review. Synthetic images showed excellent validity and realism when analyzed with already validated deep learning models.

Conclusion

We developed a THA next-generation templating tool that can generate synthetic radiographs graded higher on ultimate surgical execution than real radiographs from training data. Further refinement of this tool may potentiate patient-specific surgical planning and enable technologies such as robotics, navigation, and augmented reality (an online demo of THA-Net is available at: https://demo.osail.ai/tha_net).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助小5采纳,获得10
刚刚
传奇3应助chaofan采纳,获得10
刚刚
1秒前
粗暴的背包完成签到,获得积分10
1秒前
1秒前
从容白羊完成签到,获得积分10
1秒前
东方元语应助张哈哈采纳,获得20
1秒前
虚心求学完成签到,获得积分10
1秒前
1秒前
小邹完成签到,获得积分10
2秒前
慕青应助朴素浩然采纳,获得10
2秒前
平淡沛蓝完成签到 ,获得积分10
2秒前
桐桐应助芷莯采纳,获得10
3秒前
杨子航发布了新的文献求助10
3秒前
杨昌琪发布了新的文献求助10
3秒前
虎桔发布了新的文献求助10
3秒前
Zhangxinhao发布了新的文献求助10
4秒前
今后应助韩明轩采纳,获得10
4秒前
我来文献求助了完成签到,获得积分10
4秒前
欢呼的丁真完成签到,获得积分10
4秒前
迟梦琪发布了新的文献求助10
4秒前
不安的采白完成签到,获得积分10
4秒前
汉堡包应助阿修罗采纳,获得10
4秒前
4秒前
深海渔完成签到,获得积分20
5秒前
6秒前
王WJ发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
zoey发布了新的文献求助10
7秒前
7秒前
11完成签到,获得积分10
7秒前
7秒前
戚薇发布了新的文献求助10
8秒前
鱿鱼完成签到,获得积分10
8秒前
ww完成签到 ,获得积分10
8秒前
Unshouable完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472789
求助须知:如何正确求助?哪些是违规求助? 4575000
关于积分的说明 14349787
捐赠科研通 4502378
什么是DOI,文献DOI怎么找? 2467070
邀请新用户注册赠送积分活动 1455052
关于科研通互助平台的介绍 1429246