清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

THA-Net: A Deep Learning Solution for Next-Generation Templating and Patient-specific Surgical Execution

射线照相术 人工智能 深度学习 计算机科学 医学 外科
作者
Pouria Rouzrokh,Bardia Khosravi,John P. Mickley,Bradley J. Erickson,Michael J. Taunton,Cody C. Wyles
出处
期刊:Journal of Arthroplasty [Elsevier]
卷期号:39 (3): 727-733.e4 被引量:4
标识
DOI:10.1016/j.arth.2023.08.063
摘要

Abstract

Background

This study introduces THA-Net, a deep learning inpainting algorithm for simulating postoperative total hip arthroplasty (THA) radiographs from a single preoperative pelvis radiograph input, while being able to generate predictions either unconditionally (algorithm chooses implants) or conditionally (surgeon chooses implants).

Methods

The THA-Net is a deep learning algorithm which receives an input preoperative radiograph and subsequently replaces the target hip joint with THA implants to generate a synthetic yet realistic postoperative radiograph. We trained THA-Net on 356,305 pairs of radiographs from 14,357 patients from a single institution's total joint registry and evaluated the validity (quality of surgical execution) and realism (ability to differentiate real and synthetic radiographs) of its outputs against both human-based and software-based criteria.

Results

The surgical validity of synthetic postoperative radiographs was significantly higher than their real counterparts (mean difference: 0.8 to 1.1 points on 10-point Likert scale, P < .001), but they were not able to be differentiated in terms of realism in blinded expert review. Synthetic images showed excellent validity and realism when analyzed with already validated deep learning models.

Conclusion

We developed a THA next-generation templating tool that can generate synthetic radiographs graded higher on ultimate surgical execution than real radiographs from training data. Further refinement of this tool may potentiate patient-specific surgical planning and enable technologies such as robotics, navigation, and augmented reality (an online demo of THA-Net is available at: https://demo.osail.ai/tha_net).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
五岳三鸟完成签到,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
21秒前
白衣胜雪完成签到 ,获得积分10
26秒前
42秒前
方白秋完成签到,获得积分10
1分钟前
LFY完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
机灵的问萍完成签到,获得积分10
1分钟前
2分钟前
糊涂的青烟完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
Ji发布了新的文献求助10
3分钟前
Ji完成签到,获得积分10
3分钟前
3分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
李健应助ZXX采纳,获得10
4分钟前
4分钟前
4分钟前
ZXX发布了新的文献求助10
4分钟前
等待安莲关注了科研通微信公众号
4分钟前
4分钟前
5分钟前
等待安莲发布了新的文献求助30
5分钟前
5分钟前
5分钟前
6分钟前
6分钟前
SCI完成签到,获得积分10
6分钟前
6分钟前
直率的笑翠完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041977
捐赠科研通 2743768
什么是DOI,文献DOI怎么找? 1505243
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694887