亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

THA-Net: A Deep Learning Solution for Next-Generation Templating and Patient-specific Surgical Execution

射线照相术 人工智能 深度学习 计算机科学 医学 外科
作者
Pouria Rouzrokh,Bardia Khosravi,John P. Mickley,Bradley J. Erickson,Michael J. Taunton,Cody C. Wyles
出处
期刊:Journal of Arthroplasty [Elsevier]
卷期号:39 (3): 727-733.e4 被引量:14
标识
DOI:10.1016/j.arth.2023.08.063
摘要

Abstract

Background

This study introduces THA-Net, a deep learning inpainting algorithm for simulating postoperative total hip arthroplasty (THA) radiographs from a single preoperative pelvis radiograph input, while being able to generate predictions either unconditionally (algorithm chooses implants) or conditionally (surgeon chooses implants).

Methods

The THA-Net is a deep learning algorithm which receives an input preoperative radiograph and subsequently replaces the target hip joint with THA implants to generate a synthetic yet realistic postoperative radiograph. We trained THA-Net on 356,305 pairs of radiographs from 14,357 patients from a single institution's total joint registry and evaluated the validity (quality of surgical execution) and realism (ability to differentiate real and synthetic radiographs) of its outputs against both human-based and software-based criteria.

Results

The surgical validity of synthetic postoperative radiographs was significantly higher than their real counterparts (mean difference: 0.8 to 1.1 points on 10-point Likert scale, P < .001), but they were not able to be differentiated in terms of realism in blinded expert review. Synthetic images showed excellent validity and realism when analyzed with already validated deep learning models.

Conclusion

We developed a THA next-generation templating tool that can generate synthetic radiographs graded higher on ultimate surgical execution than real radiographs from training data. Further refinement of this tool may potentiate patient-specific surgical planning and enable technologies such as robotics, navigation, and augmented reality (an online demo of THA-Net is available at: https://demo.osail.ai/tha_net).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
科研通AI6.1应助沐琪采纳,获得10
7秒前
MiRoRo完成签到 ,获得积分10
12秒前
哐哧哐哧薯完成签到 ,获得积分10
19秒前
20秒前
canter2完成签到 ,获得积分10
21秒前
Alpha完成签到 ,获得积分10
22秒前
卓头OvQ完成签到,获得积分10
23秒前
脑洞疼应助贪玩的无招采纳,获得10
24秒前
29秒前
酷酷的续完成签到,获得积分10
29秒前
小救星小杜完成签到 ,获得积分10
30秒前
小迷糊完成签到 ,获得积分10
37秒前
哇呀呀完成签到 ,获得积分0
37秒前
canter完成签到 ,获得积分10
38秒前
沐琪发布了新的文献求助10
40秒前
rena521完成签到,获得积分10
45秒前
45秒前
ceeray23发布了新的文献求助20
46秒前
zachary009完成签到 ,获得积分10
49秒前
核方完成签到 ,获得积分10
56秒前
Chao123_发布了新的文献求助10
57秒前
krajicek完成签到,获得积分10
58秒前
甜甜的友蕊完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
fengyl完成签到,获得积分10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
bbabb完成签到 ,获得积分10
1分钟前
巫马百招完成签到,获得积分10
1分钟前
1分钟前
赘婿应助ceeray23采纳,获得20
1分钟前
动听若灵发布了新的文献求助10
1分钟前
1分钟前
sycsyc完成签到,获得积分10
1分钟前
Nn完成签到 ,获得积分10
1分钟前
王某人完成签到 ,获得积分10
1分钟前
xin发布了新的文献求助30
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
Modern Relationships 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5849623
求助须知:如何正确求助?哪些是违规求助? 6249880
关于积分的说明 15624553
捐赠科研通 4966011
什么是DOI,文献DOI怎么找? 2677722
邀请新用户注册赠送积分活动 1622025
关于科研通互助平台的介绍 1578094