THA-Net: A Deep Learning Solution for Next-Generation Templating and Patient-specific Surgical Execution

射线照相术 人工智能 深度学习 计算机科学 医学 外科
作者
Pouria Rouzrokh,Bardia Khosravi,John P. Mickley,Bradley J. Erickson,Michael J. Taunton,Cody C. Wyles
出处
期刊:Journal of Arthroplasty [Elsevier]
卷期号:39 (3): 727-733.e4 被引量:6
标识
DOI:10.1016/j.arth.2023.08.063
摘要

Abstract

Background

This study introduces THA-Net, a deep learning inpainting algorithm for simulating postoperative total hip arthroplasty (THA) radiographs from a single preoperative pelvis radiograph input, while being able to generate predictions either unconditionally (algorithm chooses implants) or conditionally (surgeon chooses implants).

Methods

The THA-Net is a deep learning algorithm which receives an input preoperative radiograph and subsequently replaces the target hip joint with THA implants to generate a synthetic yet realistic postoperative radiograph. We trained THA-Net on 356,305 pairs of radiographs from 14,357 patients from a single institution's total joint registry and evaluated the validity (quality of surgical execution) and realism (ability to differentiate real and synthetic radiographs) of its outputs against both human-based and software-based criteria.

Results

The surgical validity of synthetic postoperative radiographs was significantly higher than their real counterparts (mean difference: 0.8 to 1.1 points on 10-point Likert scale, P < .001), but they were not able to be differentiated in terms of realism in blinded expert review. Synthetic images showed excellent validity and realism when analyzed with already validated deep learning models.

Conclusion

We developed a THA next-generation templating tool that can generate synthetic radiographs graded higher on ultimate surgical execution than real radiographs from training data. Further refinement of this tool may potentiate patient-specific surgical planning and enable technologies such as robotics, navigation, and augmented reality (an online demo of THA-Net is available at: https://demo.osail.ai/tha_net).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在一起完成签到,获得积分10
刚刚
子寒完成签到,获得积分10
刚刚
1秒前
tamaco完成签到,获得积分10
1秒前
1秒前
可爱的函函应助yourenpkma123采纳,获得10
1秒前
木木完成签到,获得积分10
2秒前
haozai201发布了新的文献求助10
2秒前
葡萄冻冻发布了新的文献求助10
2秒前
2秒前
碧蓝天晴发布了新的文献求助10
3秒前
迎风映雪完成签到,获得积分10
3秒前
缓慢咖啡发布了新的文献求助20
3秒前
孙凤敏发布了新的文献求助10
4秒前
董鑫完成签到,获得积分10
4秒前
4秒前
4秒前
dry发布了新的文献求助10
5秒前
YY发布了新的文献求助30
5秒前
peter发布了新的文献求助10
5秒前
5秒前
6秒前
FB发布了新的文献求助10
6秒前
Shasa发布了新的文献求助30
6秒前
李兴月完成签到 ,获得积分10
7秒前
加油发布了新的文献求助10
7秒前
仔仔仔平完成签到,获得积分10
7秒前
hmy发布了新的文献求助10
7秒前
7秒前
8秒前
科研通AI6应助一只小咸鱼采纳,获得10
8秒前
暴躁的夏烟应助xueshu采纳,获得10
8秒前
1111chen发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
在水一方应助勤恳凌文采纳,获得10
10秒前
我是老大应助tianmafei采纳,获得10
10秒前
Vanessa发布了新的文献求助10
11秒前
虚幻山晴完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721