Adaptive scalable spatio-temporal graph convolutional network for PM2.5 prediction

计算机科学 可扩展性 图形 数据挖掘 卷积(计算机科学) 时间序列 人工智能 机器学习 理论计算机科学 人工神经网络 数据库
作者
Qingjian Ni,Yuhui Wang,Jiayi Yuan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 107080-107080 被引量:4
标识
DOI:10.1016/j.engappai.2023.107080
摘要

PM2.5 Prediction is a complex task of large-scale spatio-temporal analysis, which not only needs comprehension of static geospatial knowledge and relative features but also needs to analyze the real-time situation. This paper discusses the characteristics of the static graph and the dynamic graph in spatio-temporal series tasks. An Adaptive Scalable Spatio-temporal Graph Convolutional Network(ASGCN) model is proposed to predict PM2.5. To capture and analyze the characteristics of the time series period of PM2.5, a time convolution network based on the strategies of inception and gating is proposed and used as a temporal module. A dynamic graph idea is adopted to distinguish the spatio-temporal similarity of different periods. And an adaptive weighted multilayer graph convolution network is used to process static and dynamic graphs, aiming to analyze the spatial relationship of PM2.5 stations. The convolution network with the inception and gating improves the time-series feature capture ability, and adaptive static and dynamic graphs enhance the spatial relationship analysis ability. The temporal and spatial modules of the model are relatively independent, which benefits obtaining the potential information of datasets to improve the prediction accuracy. At the same time, these modules cooperate to make the model adaptable to various data. We choose a great number of comparative models and design a thorough experimental scheme including single-step prediction, multi-step prediction, hyperparameter experiments, and ablation experiments on two real PM2.5 datasets collected in China. Finally, the model achieves performance close to or better than the current state-of-the-art models selected for comparison in prediction tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YYT完成签到,获得积分10
刚刚
刚刚
1秒前
所所应助hhh采纳,获得10
1秒前
AL11发布了新的文献求助10
1秒前
CodeCraft应助按时下班采纳,获得10
1秒前
希望天下0贩的0应助Ge采纳,获得10
2秒前
catch完成签到,获得积分10
2秒前
科研通AI2S应助phil采纳,获得10
2秒前
搜集达人应助简单的香菇采纳,获得10
3秒前
_37_发布了新的文献求助10
3秒前
多读文献多做实验多搞计算完成签到,获得积分10
3秒前
wanci应助Bingrrrr采纳,获得20
3秒前
领导范儿应助vvei采纳,获得10
3秒前
滴滴滴完成签到,获得积分20
4秒前
务实如萱完成签到,获得积分20
4秒前
丘比特应助judy采纳,获得20
4秒前
YY发布了新的文献求助10
4秒前
Leonardi给荡乎宇宙如虚舟的求助进行了留言
5秒前
丘比特应助syl采纳,获得10
5秒前
swy完成签到,获得积分10
5秒前
6秒前
小柠檬发布了新的文献求助10
7秒前
dichunxia完成签到,获得积分10
7秒前
8秒前
无花果应助小郭采纳,获得10
8秒前
AL11完成签到,获得积分10
9秒前
有热心愿意完成签到,获得积分10
10秒前
负责丹亦完成签到,获得积分10
10秒前
123发布了新的文献求助20
10秒前
奇妙的皮皮皮完成签到,获得积分10
10秒前
知足肠乐完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
菠萝完成签到 ,获得积分10
12秒前
13秒前
滴滴滴发布了新的文献求助10
13秒前
安心完成签到,获得积分10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148466
求助须知:如何正确求助?哪些是违规求助? 2799588
关于积分的说明 7836005
捐赠科研通 2456991
什么是DOI,文献DOI怎么找? 1307679
科研通“疑难数据库(出版商)”最低求助积分说明 628245
版权声明 601655