上睑下垂
炎症
细胞生物学
免疫系统
神经炎症
脾脏
免疫学
炎症体
医学
化学
生物
作者
Chengjie Wu,Lining Wang,Sixian Chen,Lei Shi,Mengmin Liu,Pengcheng Tu,Jie Sun,Ruihua Zhao,Yafeng Zhang,Jianwei Wang,Yalan Pan,Wei Ma,Yang Guo
标识
DOI:10.1186/s12974-023-02848-0
摘要
Immune inflammatory responses play an important role in spinal cord injury (SCI); however, the beneficial and detrimental effects remain controversial. Many studies have described the role of neutrophils, macrophages, and T lymphocytes in immune inflammatory responses after SCI, although little is known about the role of B lymphocytes, and immunosuppression can easily occur after SCI.A mouse model of SCI was established, and HE staining and Nissl staining were performed to observe the pathological changes. The size and morphology of the spleen were examined, and the effects of SCI on spleen function and B cell levels were detected by flow cytometry and ELISA. To explore the specific mechanism of immunosuppression after SCI, B cells from the spleens of SCI model mice were isolated using magnetic beads and analyzed by 4D label-free quantitative proteomics. The level of inflammatory cytokines and iron ions were measured, and the expression of proteins related to the Tom20 pathway was quantified by western blotting. To clarify the relationship between iron ions and B cell pyroptosis after SCI, we used FeSO4 and CCCP, which induce oxidative stress to stimulate SCI, to interfere with B cell processes. siRNA transfection to knock down Tom20 (Tom20-KD) in B cells and human B lymphocytoma cell was used to verify the key role of Tom20. To further explore the effect of iron ions on SCI, we used deferoxamine (DFO) and iron dextran (ID) to interfere with SCI processes in mice. The level of iron ions in splenic B cells and the expression of proteins related to the Tom20-Bax-caspase-gasdermin E (GSDME) pathway were analyzed.SCI could damage spleen function and lead to a decrease in B cell levels; SCI upregulated the expression of Tom20 protein in the mitochondria of B cells; SCI could regulate the concentration of iron ions and activate the Tom20-Bax-caspase-GSDME pathway to induce B cell pyroptosis. Iron ions aggravated CCCP-induced B cell pyroptosis and human B lymphocytoma pyroptosis by activating the Tom20-Bax-caspase-GSDME pathway. DFO could reduce inflammation and promote repair after SCI by inhibiting Tom20-Bax-caspase-GSDME-induced B cell pyroptosis.Iron overload activates the Tom20-Bax-caspase-GSDME pathway after SCI, induces B cell pyroptosis, promotes inflammation, and aggravates the changes caused by SCI. This may represent a novel mechanism through which the immune inflammatory response is induced after SCI and may provide a new key target for the treatment of SCI.
科研通智能强力驱动
Strongly Powered by AbleSci AI