钙钛矿(结构)
钝化
材料科学
密度泛函理论
光伏
化学物理
偶极子
分子
纳米技术
计算化学
光伏系统
结晶学
化学
有机化学
生态学
图层(电子)
生物
作者
Lidan Liu,Can Zheng,Zhuo Xu,Yong Li,Yang Cao,Tengteng Yang,Hao Zhang,Qiang Wang,Zhike Liu,Ningyi Yuan,Jianning Ding,Dapeng Wang,Shengzhong Liu
标识
DOI:10.1002/aenm.202300610
摘要
Abstract The design of additives mainly involves selection of functional groups with coordination relationships with defects in perovskite materials. However, it is particularly important to further adjust the geometrical configuration and electronic structure of an additive. Here, the nicotinamide (NA) and its derivative 6‐Methylnicotinamide (CNA) with electron‐donor functional groups are comparatively analyzed to investigate the effect of molecular dipole and electronic configuration on the defect passivation of perovskite absorbers and the photovoltaic properties of perovskite solar cells (PSCs). Theoretical calculations demonstrate that the CNA molecule with its large molecular dipole combine with the undercoordinated Pb 2+ ions in perovskite to form a higher binding energy, which is beneficial to improve the formation energy of Pb‐related defects. Experimental characterization confirms that the CNA molecule significantly enhances the coordination effect between acylamino and undercoordinated defective Pb 2+ cations, which is conducive to obtain high‐quality, low‐defect density of state, large grain size, and smooth surface perovskite absorbers. Thanks to the electronic configuration and electronic cloud distribution of CNA molecules, the PSCs yield impressive efficiency as high as 24.33% with excellent environmental storage, heat, and light stabilities. This research provides a research basis for designing additives with steric‐charge‐dependence to assist perovskite photovoltaics.
科研通智能强力驱动
Strongly Powered by AbleSci AI