Optimized synthetic route for reduced graphene oxide-decorated Cu0.33Co0.67Se2 nanorods on Ni foam integrated with N, S co-doped porous carbon to design high-performance hybrid supercapacitor electrodes

材料科学 超级电容器 阳极 石墨烯 电极 电化学 储能 阴极 纳米技术 氧化物 功率密度 碳纤维 纳米棒 化学工程 光电子学 复合数 复合材料 化学 功率(物理) 物理 工程类 物理化学 量子力学 冶金
作者
Xiaoxiao Qu,Sangheon Jeon,Jeonghwa Jeong,Weiwei Kang,Baolin Xing,Chuanxiang Zhang,Suck Won Hong
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:966: 171421-171421 被引量:17
标识
DOI:10.1016/j.jallcom.2023.171421
摘要

As advanced energy storage devices for commercial applications, hybrid supercapacitors (HSCs) assembled with electric double-layer capacitive- and battery-type electrodes combine the advantages of electric double-layer capacitors and batteries. Thus, it offers very high potential as well as higher energy density with sufficient durability than other energy storage devices. However, the selection of electrodes has a considerable determining effect on the performance of HSCs. Here, we developed an electrode material system for HSCs with copper-cobalt selenide composite on Ni foam with the assistance of carbon nanomaterial (reduced graphene oxide, rGO). The synergistic effects of Cu0.33Co0.67Se2 loaded with rGO led to excellent electrochemical performance with respect to a unique structure. Moreover, we synthesized N, S co-doped glucose-based porous carbon (NSPC) as an anode that exhibited stable electrochemical properties with interconnected networks. The configured HSCs (i.e., Cu0.33Co0.67Se2-rGO// NSPC) represented a wide voltage window (~1.6 V) and a superior energy density (~41.5 Wh kg−1) at a power density of ~801.5 W kg−1 that exhibited their inherent advantageous characteristics and combinatorial effects. Therefore, the efficient synergistic effects and superior electrochemical performances were optimized with appropriate ratios of the anode and cathode in the integrated system, which demonstrated high energy density and excellent structural stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
dslnfakjnij发布了新的文献求助20
2秒前
2秒前
科研通AI5应助高兴123采纳,获得30
6秒前
7秒前
ffchen111完成签到 ,获得积分10
7秒前
dzyong发布了新的文献求助10
8秒前
zhang完成签到 ,获得积分10
8秒前
yinger1984发布了新的文献求助10
8秒前
CodeCraft应助hy采纳,获得10
9秒前
dd发布了新的文献求助10
9秒前
qsdxasc完成签到,获得积分20
13秒前
shoplog发布了新的文献求助10
13秒前
dzyong完成签到,获得积分10
15秒前
充电宝应助Zlq采纳,获得10
16秒前
英俊的铭应助biubiu采纳,获得10
17秒前
缓慢的白开水完成签到,获得积分10
17秒前
水的很厉害完成签到,获得积分10
18秒前
柒柒完成签到,获得积分10
18秒前
Coffee完成签到 ,获得积分10
18秒前
哦吼吼完成签到 ,获得积分10
18秒前
18秒前
冷艳的纸鹤完成签到,获得积分10
18秒前
小蘑菇应助小乔采纳,获得10
18秒前
20秒前
21秒前
liu发布了新的文献求助10
22秒前
23秒前
奥利奥利奥完成签到 ,获得积分10
23秒前
rabwang完成签到,获得积分20
23秒前
LeimingDai发布了新的文献求助10
23秒前
25秒前
张无缺发布了新的文献求助10
25秒前
隐形曼青应助酸桃子采纳,获得30
27秒前
cbr完成签到 ,获得积分10
27秒前
阳光完成签到,获得积分10
28秒前
YY发布了新的文献求助10
28秒前
斑比完成签到,获得积分10
28秒前
坚定书竹完成签到 ,获得积分10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671735
求助须知:如何正确求助?哪些是违规求助? 3228378
关于积分的说明 9779943
捐赠科研通 2938695
什么是DOI,文献DOI怎么找? 1610206
邀请新用户注册赠送积分活动 760602
科研通“疑难数据库(出版商)”最低求助积分说明 736096