Convolutional Neural Networks-Based Framework for Early Identification of Dementia Using MRI of Brain Asymmetry

卷积神经网络 计算机科学 人工智能 神经影像学 模式识别(心理学) 痴呆 支持向量机 Softmax函数 深度学习 线性判别分析 预处理器 机器学习 医学 病理 疾病 心理学 神经科学
作者
Nitsa J. Herzog,George D. Magoulas
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:32 (12) 被引量:11
标识
DOI:10.1142/s0129065722500538
摘要

Computer-aided diagnosis of health problems and pathological conditions has become a substantial part of medical, biomedical, and computer science research. This paper focuses on the diagnosis of early and progressive dementia, building on the potential of deep learning (DL) models. The proposed computational framework exploits a magnetic resonance imaging (MRI) brain asymmetry biomarker, which has been associated with early dementia, and employs DL architectures for MRI image classification. Identification of early dementia is accomplished by an eight-layered convolutional neural network (CNN) as well as transfer learning of pretrained CNNs from ImageNet. Different instantiations of the proposed CNN architecture are tested. These are equipped with Softmax, support vector machine (SVM), linear discriminant (LD), or [Formula: see text] -nearest neighbor (KNN) classification layers, assembled as a separate classification module, which are attached to the core CNN architecture. The initial imaging data were obtained from the MRI directory of the Alzheimer's disease neuroimaging initiative 3 (ADNI3) database. The independent testing dataset was created using image preprocessing and segmentation algorithms applied to unseen patients' imaging data. The proposed approach demonstrates a 90.12% accuracy in distinguishing patients who are cognitively normal subjects from those who have Alzheimer's disease (AD), and an 86.40% accuracy in detecting early mild cognitive impairment (EMCI).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佰态发布了新的文献求助10
刚刚
1秒前
酷波er应助博修采纳,获得10
1秒前
2秒前
2秒前
科研专家发布了新的文献求助10
3秒前
洁净的代容完成签到,获得积分10
3秒前
奋斗的伟宸完成签到,获得积分10
4秒前
张杰完成签到,获得积分10
5秒前
5秒前
正直千兰发布了新的文献求助10
6秒前
Lisa发布了新的文献求助10
7秒前
8秒前
大力云朵发布了新的文献求助20
8秒前
李爱国应助CXS采纳,获得10
9秒前
张杰发布了新的文献求助10
9秒前
DrLee完成签到,获得积分10
10秒前
13秒前
16秒前
16秒前
来了完成签到,获得积分10
18秒前
粱忆寒发布了新的文献求助10
20秒前
21秒前
麻雀发布了新的文献求助30
21秒前
21秒前
大脑袋应助感动的念双采纳,获得30
23秒前
www完成签到 ,获得积分10
25秒前
隐形从梦完成签到 ,获得积分20
26秒前
CodeCraft应助Jero采纳,获得10
26秒前
27秒前
Zzzzzzz完成签到,获得积分10
27秒前
博修发布了新的文献求助10
28秒前
kingking完成签到,获得积分10
28秒前
30秒前
十二完成签到 ,获得积分10
31秒前
32秒前
QYF发布了新的文献求助10
32秒前
上官若男应助123采纳,获得10
33秒前
33秒前
脑洞疼应助吗喽采纳,获得10
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962340
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141064
捐赠科研通 3241149
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803382