Identifying the Key Components in ResNet-50 for Diabetic Retinopathy Grading from Fundus Images: A Systematic Investigation

计算机科学 人工智能 残差神经网络 深度学习 卷积神经网络 模式识别(心理学) 机器学习 分级(工程) 重采样 数据挖掘 工程类 土木工程
作者
Yijin Huang,Li Lin,Pujin Cheng,Junyan Lyu,Roger Tam,Xiaoying Tang
出处
期刊:Diagnostics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (10): 1664-1664
标识
DOI:10.3390/diagnostics13101664
摘要

Although deep learning-based diabetic retinopathy (DR) classification methods typically benefit from well-designed architectures of convolutional neural networks, the training setting also has a non-negligible impact on prediction performance. The training setting includes various interdependent components, such as an objective function, a data sampling strategy, and a data augmentation approach. To identify the key components in a standard deep learning framework (ResNet-50) for DR grading, we systematically analyze the impact of several major components. Extensive experiments are conducted on a publicly available dataset EyePACS. We demonstrate that (1) the DR grading framework is sensitive to input resolution, objective function, and composition of data augmentation; (2) using mean square error as the loss function can effectively improve the performance with respect to a task-specific evaluation metric, namely the quadratically weighted Kappa; (3) utilizing eye pairs boosts the performance of DR grading and; (4) using data resampling to address the problem of imbalanced data distribution in EyePACS hurts the performance. Based on these observations and an optimal combination of the investigated components, our framework, without any specialized network design, achieves a state-of-the-art result (0.8631 for Kappa) on the EyePACS test set (a total of 42,670 fundus images) with only image-level labels. We also examine the proposed training practices on other fundus datasets and other network architectures to evaluate their generalizability. Our codes and pre-trained model are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
天天快乐应助科研通管家采纳,获得30
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
无花果应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
123完成签到 ,获得积分10
5秒前
颖二二完成签到 ,获得积分10
7秒前
CCL完成签到,获得积分10
9秒前
醉清风完成签到 ,获得积分10
9秒前
赵田完成签到 ,获得积分10
16秒前
NexusExplorer应助缓慢的从寒采纳,获得10
16秒前
柒八染完成签到 ,获得积分10
17秒前
小丽应助drhwang采纳,获得10
19秒前
游01完成签到 ,获得积分10
20秒前
guojingjing完成签到 ,获得积分20
21秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
23秒前
摇不滚摇滚完成签到 ,获得积分10
29秒前
mito完成签到,获得积分10
29秒前
米里迷路完成签到 ,获得积分10
31秒前
YYY完成签到,获得积分10
32秒前
XMUh完成签到,获得积分10
35秒前
35秒前
bing完成签到,获得积分10
36秒前
38秒前
QiongYin_123完成签到 ,获得积分10
41秒前
41秒前
虚心念桃完成签到,获得积分10
42秒前
传奇3应助wakawaka采纳,获得10
42秒前
菠萝吹雪完成签到,获得积分10
43秒前
43秒前
shihui完成签到 ,获得积分10
46秒前
abcdefg发布了新的文献求助10
48秒前
文心同学完成签到,获得积分10
48秒前
51秒前
枫威完成签到 ,获得积分10
52秒前
一目发布了新的文献求助10
52秒前
Keyuuu30完成签到,获得积分0
53秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671320
求助须知:如何正确求助?哪些是违规求助? 3228175
关于积分的说明 9778760
捐赠科研通 2938438
什么是DOI,文献DOI怎么找? 1610028
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 736020