Development of New Methods of Studying Catalyst and Materials Surfaces with Ambient Pressure Photoelectron Spectroscopy

X射线光电子能谱 催化作用 化学 化学状态 氧化物 多相催化 价(化学) 化学工程 纳米技术 化学物理 材料科学 有机化学 工程类
作者
Franklin Tao
出处
期刊:Accounts of Chemical Research [American Chemical Society]
标识
DOI:10.1021/acs.accounts.4c00508
摘要

ConspectusThe surface of a catalyst is crucial for understanding the mechanisms of catalytic reactions at the molecular level and developing new catalysts with higher activity, selectivity, and durability. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is a technique studying the surface of a sample in the gas phase, mainly identifying chemical identity, analyzing oxidation state, and measuring surface composition.In the last decade, numerous photoelectron spectroscopic methods for fundamental studies of key topics in catalysis using AP-XPS have been developed. By tracking the evolution of the catalyst surface during catalyst preparation, AP-XPS can assist in identifying the parameters for preparing an expected catalyst structure. Additionally, it can uncover adsorbate coverage-induced surface restructuring by monitoring the photoemission features of key elements as the gas pressure increases. Surface phase transitions of a catalyst support, supported metal, or supported oxide nanoparticles and restructuring of supported single-atom sites may occur at temperatures lower than a catalysis temperature. AP-XPS can track these temperature-dependent phase transition or structural evolution under catalytic conditions. It also enables analysis of the electronic structure of the catalyst surface during catalysis by collecting valence band spectrum at a specific catalysis temperature. Moreover, it can detect stable intermediates formed at a temperature lower than the catalysis onset temperature and track their transformation to product molecules, providing significant insights in proposing a pathway closest to the actual but unknown one. Time-on-stream quantification of oxidation and reduction processes on catalyst surfaces allows for the study of kinetics of redox, including determinations of reaction order and activation barrier. One challenging task in accurately measuring catalytic reaction rates under kinetic control is measurement of the number of catalytic sites. AP-XPS is a valuable technique for this task, as it can qualitatively identify active sites and quantitatively measure the number of active sites under a specific catalytic condition. For photocatalytic and photoelectrocatalytic systems, AP-XPS helps elucidate charge transfer at the interface of a cocatalyst and semiconductor by identifying shifts in binding energy of a key element, shedding light on electron–hole separation. Photoelectron-induced excitation (PEIE) spectroscopy provides a unique capability for in situ measurement of gas products proximal to the catalyst surface within 0–0.1 mm during catalysis. It enables the on-site in situ identification of gas products and quantification of their partial pressures.The successful development of these methods highlights the unique capabilities of AP-XPS in addressing key topics in catalysis and uncovering crucial information about catalysts under reaction or catalytic conditions that other spectroscopy or microscopy techniques cannot. These advancements are expected to significantly benefit many fields in chemistry, chemical engineering, energy science, materials science, and environmental science. Applications of AP-XPS to study solid–liquid interfaces, especially at the electrode–electrolyte interface in electrochemical processes, are significant. These applications at solid−liquid interfaces include electrification-based chemical transformations, electrochemical CO2 reduction, water electrolysis, electrochemical reduction of oxidants on the cathode and even oxidation of fuels in fuel cell process, and oxidation and reduction processes in batteries. Further development of instrumentation and spectral methods of AP-XPS will be beneficial to energy conversion, sustainable chemical transformation, and environmental remediation as well as materials design for quantum computing hardware.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我也完成签到,获得积分10
刚刚
刚刚
爆米花完成签到,获得积分10
1秒前
美好焦发布了新的文献求助10
1秒前
1秒前
Leon完成签到,获得积分10
1秒前
万能图书馆应助unique采纳,获得10
1秒前
1秒前
彩色垣完成签到,获得积分10
2秒前
cloverdown完成签到,获得积分10
2秒前
传奇3应助ABU采纳,获得10
2秒前
askaga发布了新的文献求助10
3秒前
小柠发布了新的文献求助10
3秒前
小赵完成签到 ,获得积分0
4秒前
4秒前
4秒前
wcj发布了新的文献求助10
4秒前
www完成签到,获得积分10
5秒前
ZXY完成签到 ,获得积分10
5秒前
5秒前
1111完成签到 ,获得积分10
6秒前
充电宝应助小底采纳,获得10
6秒前
华仔应助顺利秋灵采纳,获得10
6秒前
琦琦完成签到 ,获得积分10
6秒前
6秒前
6秒前
深情安青应助伊凡采纳,获得10
6秒前
Chaimengdi发布了新的文献求助10
7秒前
小乌龟完成签到,获得积分10
7秒前
7秒前
7秒前
鸣笛应助彩色垣采纳,获得10
7秒前
8秒前
8秒前
8秒前
8秒前
天天天晴完成签到,获得积分10
9秒前
积极的誉完成签到,获得积分10
9秒前
我要学习发布了新的文献求助10
9秒前
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950593
求助须知:如何正确求助?哪些是违规求助? 3495971
关于积分的说明 11080135
捐赠科研通 3226361
什么是DOI,文献DOI怎么找? 1783812
邀请新用户注册赠送积分活动 867916
科研通“疑难数据库(出版商)”最低求助积分说明 800977