已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of New Methods of Studying Catalyst and Materials Surfaces with Ambient Pressure Photoelectron Spectroscopy

X射线光电子能谱 催化作用 化学 化学状态 氧化物 多相催化 价(化学) 化学工程 纳米技术 化学物理 材料科学 有机化学 工程类
作者
Franklin Tao
出处
期刊:Accounts of Chemical Research [American Chemical Society]
标识
DOI:10.1021/acs.accounts.4c00508
摘要

ConspectusThe surface of a catalyst is crucial for understanding the mechanisms of catalytic reactions at the molecular level and developing new catalysts with higher activity, selectivity, and durability. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is a technique studying the surface of a sample in the gas phase, mainly identifying chemical identity, analyzing oxidation state, and measuring surface composition.In the last decade, numerous photoelectron spectroscopic methods for fundamental studies of key topics in catalysis using AP-XPS have been developed. By tracking the evolution of the catalyst surface during catalyst preparation, AP-XPS can assist in identifying the parameters for preparing an expected catalyst structure. Additionally, it can uncover adsorbate coverage-induced surface restructuring by monitoring the photoemission features of key elements as the gas pressure increases. Surface phase transitions of a catalyst support, supported metal, or supported oxide nanoparticles and restructuring of supported single-atom sites may occur at temperatures lower than a catalysis temperature. AP-XPS can track these temperature-dependent phase transition or structural evolution under catalytic conditions. It also enables analysis of the electronic structure of the catalyst surface during catalysis by collecting valence band spectrum at a specific catalysis temperature. Moreover, it can detect stable intermediates formed at a temperature lower than the catalysis onset temperature and track their transformation to product molecules, providing significant insights in proposing a pathway closest to the actual but unknown one. Time-on-stream quantification of oxidation and reduction processes on catalyst surfaces allows for the study of kinetics of redox, including determinations of reaction order and activation barrier. One challenging task in accurately measuring catalytic reaction rates under kinetic control is measurement of the number of catalytic sites. AP-XPS is a valuable technique for this task, as it can qualitatively identify active sites and quantitatively measure the number of active sites under a specific catalytic condition. For photocatalytic and photoelectrocatalytic systems, AP-XPS helps elucidate charge transfer at the interface of a cocatalyst and semiconductor by identifying shifts in binding energy of a key element, shedding light on electron–hole separation. Photoelectron-induced excitation (PEIE) spectroscopy provides a unique capability for in situ measurement of gas products proximal to the catalyst surface within 0–0.1 mm during catalysis. It enables the on-site in situ identification of gas products and quantification of their partial pressures.The successful development of these methods highlights the unique capabilities of AP-XPS in addressing key topics in catalysis and uncovering crucial information about catalysts under reaction or catalytic conditions that other spectroscopy or microscopy techniques cannot. These advancements are expected to significantly benefit many fields in chemistry, chemical engineering, energy science, materials science, and environmental science. Applications of AP-XPS to study solid–liquid interfaces, especially at the electrode–electrolyte interface in electrochemical processes, are significant. These applications at solid−liquid interfaces include electrification-based chemical transformations, electrochemical CO2 reduction, water electrolysis, electrochemical reduction of oxidants on the cathode and even oxidation of fuels in fuel cell process, and oxidation and reduction processes in batteries. Further development of instrumentation and spectral methods of AP-XPS will be beneficial to energy conversion, sustainable chemical transformation, and environmental remediation as well as materials design for quantum computing hardware.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
鱼儿发布了新的文献求助10
3秒前
十有五发布了新的文献求助10
7秒前
Radarax发布了新的文献求助200
8秒前
大意的悟空完成签到 ,获得积分10
16秒前
aa完成签到,获得积分20
17秒前
归陌完成签到 ,获得积分10
28秒前
香蕉觅云应助科研通管家采纳,获得10
28秒前
浮游应助科研通管家采纳,获得10
28秒前
28秒前
在水一方应助科研通管家采纳,获得10
28秒前
天天快乐应助科研通管家采纳,获得10
29秒前
阳光秋柔完成签到 ,获得积分10
30秒前
狄幼珊完成签到,获得积分20
31秒前
LB应助gu采纳,获得20
35秒前
十有五发布了新的文献求助10
36秒前
你的完成签到 ,获得积分10
36秒前
42秒前
catch完成签到,获得积分10
45秒前
45秒前
47秒前
cy0824完成签到 ,获得积分10
49秒前
coco发布了新的文献求助10
51秒前
54秒前
JamesPei应助kukudou2采纳,获得10
55秒前
58秒前
爆米花应助不说再见采纳,获得10
59秒前
puppy完成签到 ,获得积分10
1分钟前
月亮啊完成签到 ,获得积分10
1分钟前
lvzhechen完成签到,获得积分10
1分钟前
Nan完成签到,获得积分20
1分钟前
不说再见完成签到,获得积分20
1分钟前
苗条晓霜完成签到 ,获得积分10
1分钟前
李小小完成签到,获得积分10
1分钟前
丰富如南发布了新的文献求助10
1分钟前
莉莉斯完成签到 ,获得积分10
1分钟前
小马甲应助Nan采纳,获得10
1分钟前
peng完成签到 ,获得积分10
1分钟前
大胆隶完成签到 ,获得积分10
1分钟前
传奇3应助李小小采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291051
求助须知:如何正确求助?哪些是违规求助? 4442208
关于积分的说明 13829504
捐赠科研通 4325125
什么是DOI,文献DOI怎么找? 2374008
邀请新用户注册赠送积分活动 1369374
关于科研通互助平台的介绍 1333502