Development of New Methods of Studying Catalyst and Materials Surfaces with Ambient Pressure Photoelectron Spectroscopy

X射线光电子能谱 催化作用 化学 化学状态 氧化物 多相催化 价(化学) 化学工程 纳米技术 化学物理 材料科学 有机化学 工程类
作者
Franklin Tao
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:58 (1): 11-23 被引量:3
标识
DOI:10.1021/acs.accounts.4c00508
摘要

ConspectusThe surface of a catalyst is crucial for understanding the mechanisms of catalytic reactions at the molecular level and developing new catalysts with higher activity, selectivity, and durability. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is a technique studying the surface of a sample in the gas phase, mainly identifying chemical identity, analyzing oxidation state, and measuring surface composition.In the last decade, numerous photoelectron spectroscopic methods for fundamental studies of key topics in catalysis using AP-XPS have been developed. By tracking the evolution of the catalyst surface during catalyst preparation, AP-XPS can assist in identifying the parameters for preparing an expected catalyst structure. Additionally, it can uncover adsorbate coverage-induced surface restructuring by monitoring the photoemission features of key elements as the gas pressure increases. Surface phase transitions of a catalyst support, supported metal, or supported oxide nanoparticles and restructuring of supported single-atom sites may occur at temperatures lower than a catalysis temperature. AP-XPS can track these temperature-dependent phase transition or structural evolution under catalytic conditions. It also enables analysis of the electronic structure of the catalyst surface during catalysis by collecting valence band spectrum at a specific catalysis temperature. Moreover, it can detect stable intermediates formed at a temperature lower than the catalysis onset temperature and track their transformation to product molecules, providing significant insights in proposing a pathway closest to the actual but unknown one. Time-on-stream quantification of oxidation and reduction processes on catalyst surfaces allows for the study of kinetics of redox, including determinations of reaction order and activation barrier. One challenging task in accurately measuring catalytic reaction rates under kinetic control is measurement of the number of catalytic sites. AP-XPS is a valuable technique for this task, as it can qualitatively identify active sites and quantitatively measure the number of active sites under a specific catalytic condition. For photocatalytic and photoelectrocatalytic systems, AP-XPS helps elucidate charge transfer at the interface of a cocatalyst and semiconductor by identifying shifts in binding energy of a key element, shedding light on electron-hole separation. Photoelectron-induced excitation (PEIE) spectroscopy provides a unique capability for in situ measurement of gas products proximal to the catalyst surface within 0-0.1 mm during catalysis. It enables the on-site in situ identification of gas products and quantification of their partial pressures.The successful development of these methods highlights the unique capabilities of AP-XPS in addressing key topics in catalysis and uncovering crucial information about catalysts under reaction or catalytic conditions that other spectroscopy or microscopy techniques cannot. These advancements are expected to significantly benefit many fields in chemistry, chemical engineering, energy science, materials science, and environmental science. Applications of AP-XPS to study solid-liquid interfaces, especially at the electrode-electrolyte interface in electrochemical processes, are significant. These applications at solid-liquid interfaces include electrification-based chemical transformations, electrochemical CO2 reduction, water electrolysis, electrochemical reduction of oxidants on the cathode and even oxidation of fuels in fuel cell process, and oxidation and reduction processes in batteries. Further development of instrumentation and spectral methods of AP-XPS will be beneficial to energy conversion, sustainable chemical transformation, and environmental remediation as well as materials design for quantum computing hardware.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助稳重的若雁采纳,获得10
刚刚
给好评发布了新的文献求助10
刚刚
Lucas应助哲寒采纳,获得10
1秒前
圆锥香蕉举报白智妍求助涉嫌违规
1秒前
等等要上进应助艺玲采纳,获得10
1秒前
anni完成签到,获得积分10
2秒前
七分甜豆完成签到 ,获得积分10
2秒前
3秒前
科研小卡拉米完成签到,获得积分10
4秒前
打打应助布布爱吃炸鸡采纳,获得30
5秒前
arui完成签到,获得积分10
5秒前
Dan完成签到,获得积分10
5秒前
小杭76应助11oneelevenisme采纳,获得10
6秒前
6秒前
Sue完成签到,获得积分10
7秒前
fdk839375548发布了新的文献求助10
7秒前
8秒前
小青椒应助majuanwei采纳,获得50
9秒前
执着可仁完成签到 ,获得积分10
9秒前
10秒前
SciGPT应助阳光下的味道采纳,获得10
10秒前
222333发布了新的文献求助10
11秒前
69qq发布了新的文献求助10
11秒前
打打应助欢喜的不尤采纳,获得100
12秒前
迅速志泽发布了新的文献求助100
12秒前
浮游应助健壮的绿凝采纳,获得10
12秒前
兴奋千兰完成签到,获得积分10
13秒前
圆锥香蕉举报逗小豆求助涉嫌违规
13秒前
14秒前
14秒前
Z01完成签到,获得积分10
14秒前
隐形曼青应助朱望舒采纳,获得10
15秒前
小羊完成签到,获得积分10
15秒前
16秒前
球球的铲屎官完成签到,获得积分10
16秒前
耳机单蹦应助yjq采纳,获得20
16秒前
良幸循环完成签到,获得积分10
16秒前
16秒前
量子星尘发布了新的文献求助10
18秒前
爱听歌的依秋完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409994
求助须知:如何正确求助?哪些是违规求助? 4527505
关于积分的说明 14111164
捐赠科研通 4441880
什么是DOI,文献DOI怎么找? 2437744
邀请新用户注册赠送积分活动 1429674
关于科研通互助平台的介绍 1407750