Development of New Methods of Studying Catalyst and Materials Surfaces with Ambient Pressure Photoelectron Spectroscopy

X射线光电子能谱 催化作用 化学 化学状态 氧化物 多相催化 价(化学) 化学工程 纳米技术 化学物理 材料科学 有机化学 工程类
作者
Franklin Tao
出处
期刊:Accounts of Chemical Research [American Chemical Society]
标识
DOI:10.1021/acs.accounts.4c00508
摘要

ConspectusThe surface of a catalyst is crucial for understanding the mechanisms of catalytic reactions at the molecular level and developing new catalysts with higher activity, selectivity, and durability. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is a technique studying the surface of a sample in the gas phase, mainly identifying chemical identity, analyzing oxidation state, and measuring surface composition.In the last decade, numerous photoelectron spectroscopic methods for fundamental studies of key topics in catalysis using AP-XPS have been developed. By tracking the evolution of the catalyst surface during catalyst preparation, AP-XPS can assist in identifying the parameters for preparing an expected catalyst structure. Additionally, it can uncover adsorbate coverage-induced surface restructuring by monitoring the photoemission features of key elements as the gas pressure increases. Surface phase transitions of a catalyst support, supported metal, or supported oxide nanoparticles and restructuring of supported single-atom sites may occur at temperatures lower than a catalysis temperature. AP-XPS can track these temperature-dependent phase transition or structural evolution under catalytic conditions. It also enables analysis of the electronic structure of the catalyst surface during catalysis by collecting valence band spectrum at a specific catalysis temperature. Moreover, it can detect stable intermediates formed at a temperature lower than the catalysis onset temperature and track their transformation to product molecules, providing significant insights in proposing a pathway closest to the actual but unknown one. Time-on-stream quantification of oxidation and reduction processes on catalyst surfaces allows for the study of kinetics of redox, including determinations of reaction order and activation barrier. One challenging task in accurately measuring catalytic reaction rates under kinetic control is measurement of the number of catalytic sites. AP-XPS is a valuable technique for this task, as it can qualitatively identify active sites and quantitatively measure the number of active sites under a specific catalytic condition. For photocatalytic and photoelectrocatalytic systems, AP-XPS helps elucidate charge transfer at the interface of a cocatalyst and semiconductor by identifying shifts in binding energy of a key element, shedding light on electron–hole separation. Photoelectron-induced excitation (PEIE) spectroscopy provides a unique capability for in situ measurement of gas products proximal to the catalyst surface within 0–0.1 mm during catalysis. It enables the on-site in situ identification of gas products and quantification of their partial pressures.The successful development of these methods highlights the unique capabilities of AP-XPS in addressing key topics in catalysis and uncovering crucial information about catalysts under reaction or catalytic conditions that other spectroscopy or microscopy techniques cannot. These advancements are expected to significantly benefit many fields in chemistry, chemical engineering, energy science, materials science, and environmental science. Applications of AP-XPS to study solid–liquid interfaces, especially at the electrode–electrolyte interface in electrochemical processes, are significant. These applications at solid−liquid interfaces include electrification-based chemical transformations, electrochemical CO2 reduction, water electrolysis, electrochemical reduction of oxidants on the cathode and even oxidation of fuels in fuel cell process, and oxidation and reduction processes in batteries. Further development of instrumentation and spectral methods of AP-XPS will be beneficial to energy conversion, sustainable chemical transformation, and environmental remediation as well as materials design for quantum computing hardware.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
倩Q发布了新的文献求助10
1秒前
852应助胡子采纳,获得10
1秒前
1秒前
科研达人发布了新的文献求助10
1秒前
西大喜完成签到,获得积分10
1秒前
zhao完成签到,获得积分10
2秒前
wh完成签到,获得积分10
3秒前
打打应助科研狼采纳,获得10
3秒前
呆萌综合征完成签到,获得积分20
3秒前
Demons完成签到,获得积分10
3秒前
3秒前
小乔同学发布了新的文献求助10
4秒前
yuan完成签到,获得积分10
4秒前
友好的白柏完成签到,获得积分10
4秒前
Manxi发布了新的文献求助10
4秒前
niu发布了新的文献求助10
4秒前
闲登小阁读新晴完成签到,获得积分10
5秒前
七七完成签到 ,获得积分10
5秒前
sunshine完成签到,获得积分10
5秒前
Augebblick完成签到,获得积分10
6秒前
刘一严完成签到 ,获得积分10
6秒前
元宝团子完成签到,获得积分10
6秒前
6秒前
ksdbG完成签到,获得积分10
7秒前
whitexue完成签到,获得积分10
7秒前
亦玉完成签到,获得积分10
7秒前
7秒前
Beast666发布了新的文献求助10
7秒前
可可完成签到,获得积分10
8秒前
科研达人完成签到,获得积分10
9秒前
dvd完成签到 ,获得积分10
9秒前
9秒前
cc完成签到,获得积分10
10秒前
54662133完成签到,获得积分10
11秒前
Litoivda完成签到 ,获得积分10
11秒前
Ava应助爱看论文采纳,获得10
11秒前
haoyunlai完成签到,获得积分10
11秒前
mojito应助风华采纳,获得10
11秒前
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337441
求助须知:如何正确求助?哪些是违规求助? 4474663
关于积分的说明 13925195
捐赠科研通 4369647
什么是DOI,文献DOI怎么找? 2400867
邀请新用户注册赠送积分活动 1393968
关于科研通互助平台的介绍 1365793